GENERAL |
|
|
|
|
Efficient Polarization Entanglement Purification Using Spatial Entanglement |
GU Bin1,2, CHEN Yu-Lin1,2, ZHANG Cheng-Yi1,2, HUANG Yu-Gai3 |
1College of Math and Physics, Nanjing University of Information Science and Technology, Nanjing 210044
2The Photonic Technology Lab, Nanjing University of Information Science and Technology, Nanjing 210044
3Jiangsu Institute of Education, Najing 210013
|
|
Cite this article: |
GU Bin, CHEN Yu-Lin, ZHANG Cheng-Yi et al 2010 Chin. Phys. Lett. 27 100304 |
|
|
Abstract The protocol using spatial entanglement to purify polarization entanglement by entanglement transformation between different degrees of freedom in a realistic environment is elaborated. Our analyses show that the bit-flip error can be completely purified, but the pure maximally entangled state can not be obtained ultimately if the spatial entanglement is impure. The fidelity of the purified state is decided by the spatial entanglement. Furthermore, this protocol can also be extended to purify the multi-particle Greenberg-Horne-Zeilinger (GHZ) state. It is presented that the spatial entanglement can be served as another source to improve the quality of entanglement.
|
Keywords:
03.67.Pp
03.67.Mn
03.67.Hk
42.50.-p
|
|
Received: 08 June 2010
Published: 26 September 2010
|
|
PACS: |
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.-p
|
(Quantum optics)
|
|
|
|
|
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[3] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[4] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[5] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[6] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[7] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[8] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University)
[9] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[10] Murao M, Plenio B, Popescu S, Vedral V and Knight P L 1998 Phys. Rev. A 57 R4075
[11] Cheong Y W, Lee S W, Lee J and Lee H W 2007 Phys. Rev. A 76 042314
[12] Horodecki M and Horodecki P 1999 Phys. Rev. A 59 4206
[13] Pan J W, Simon C and Zeilinger A 2001 Nature 410 1067
[14] Pan J W, Gasparonl S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[15] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[16] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[17] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[18] Sheng Y B, Deng F G and Zhou H Y 2008 Eur. Phys. J. D 48 279
[19] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[20] Bose S, Vedral V and Knight PL 1999 Phys. Rev. A 60 194
[21] Zhao Z, Yang T, Chen Y A, Zhang A N and Pan J W 2003 Phys. Rev. Lett. 90 207901
[22] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[23] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[24] Minář J, de Riedmatten H, Simon C, Zbinden H and Gisin N 2008 Phys. Rev. A 77 052325
[25] Bruss D 1998 Phys. Rev. Lett. 81 3018
[26] Bechmann-Pasquinucci H and Gisin N 1999 Phys. Rev. A 59 4238
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|