Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 1160-1163    DOI:
Original Articles |
Circular Loop Equation of a Cosmic String in Gauss--Bonnet--de
CHENG Hong-Bo;LIU Yun-Qi
Department of Physics, East China University of Science and Technology, Shanghai 200237
Cite this article:   
CHENG Hong-Bo, LIU Yun-Qi 2008 Chin. Phys. Lett. 25 1160-1163
Download: PDF(154KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We perform the analysis of evolution of cosmic string loops in the background of Gauss--Bonnet--de Sitter. The equation of motion of cosmic string loops in this spacetime is derived. Having solved the equation numerically, we investigate the dependence of the loop evolution on the values of α, related
to the Gauss--Bonnet coupling. In the Gauss--Bonnet--de Sitter spacetimes with different dimensionality there exists a special parameter αm. In the environment with α>αm, all the cosmic string loops will collapse to form black holes. Within the region 0<α<αm, the stronger Gauss--Bonnet effect will lead more cosmic string loops, including smaller ones, to form black holes. The larger the value of α is, the smaller the special values that exist, and only the cosmic string loops with initial radius larger than the special values can expand and evolve instead of becoming black holes.
Keywords: 98.80.Cq     
Received: 18 October 2007      Published: 27 February 2008
PACS:  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/01160
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Hong-Bo
LIU Yun-Qi
[1] Vielenkin A and Shellard E P S 1994 Cosmic Strings andOther Topological Defects (Cambridge: Cambridge University Press)
[2] Hindmarsh M B and Kibble T W B 1995 Rep. Prog. Phys. 58 477
[3] Sarangi S and Tye S H 2002 Phys. Lett. B 536 185
[4] Dvali G and Vilenkin A 2004 J. Cosmol. Astropart. Phys. 03 010
[5] Copeland E J, Myers R C and Polchinski J 2004 J. HighEnergy Phys. 06 013
[6] Pogosian L, Wyman M C and Wasserman I 2004 J. Cosmol.Astropart. Phys. 09 008
[7] Jeong E and Smoot G F 2004 astro-ph/0406432
[8] Sazhin M V et al 2004 astro-ph/0406516
[9] Bennett D P and Bouchet F R 1991 Phys. Rev. D 432733
[10] Damour T and Vilenkin A 2005 Phys. Rev. D 71 063510
[11] Hogan C J 2006 Phys. Rev. D 74 043526
[12] Kibble T W B 1980 Phys. Rep. 67 183
[13] Vilenkin A 1985 Phys. Rep. 121 263
[14] Garriga J and Vilenkin A 1993 Phys. Rev. D 47 3265
[15] Larsen A L 1994 Phys. Rev. D 50 2623
[16] Anderson M R 2003 The Mathematical Theory of CosmicString---Cosmic Strings in the Wire Approximation (Bristol: IOPPublishing)
[17] Li X and Cheng H 1996 Class. Quantum Grav. 13 225
[18] Dabrowski M P and Larsen A L 1998 Phys. Rev. D 57 5108
[19] Gu Z and Cheng H 2007 Gen. Rel. Grav. 39 1
[20] Cheng H and Li X 1996 Chin. Phys. Lett. 13 317
[21] Olum K D and Vilenkin A 2006 Phys. Rev. D 74 063516
[22] Abdalla E and Konoplya R A 2005 Phys. Rev. D 72 084006
[23] Gleiser R J and Dotti G 2005 Phys. Rev. D 72 124002
[24] Sahabandu C, Suranyi P, Vaz C and Wijewardhana L C R 2006 Phys. Rev. D 73 044009
[25] Dominguez A E and Gallo E 2006 Phys. Rev. D 73 064018
[26] Maeda H and Dadhich N 2006 Phys. Rev. D 74 021501(R)
Related articles from Frontiers Journals
[1] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 1160-1163
[2] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 1160-1163
[3] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 1160-1163
[4] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 1160-1163
[5] N. P. Gaikwad**, M. S. Borkar, S. S. Charjan . Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation[J]. Chin. Phys. Lett., 2011, 28(8): 1160-1163
[6] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 1160-1163
[7] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 1160-1163
[8] Abdussattar**, S. R. Prajapati** . Friedman–Robertson–Walker Models with Late-Time Acceleration[J]. Chin. Phys. Lett., 2011, 28(2): 1160-1163
[9] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 1160-1163
[10] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 1160-1163
[11] Koijam Manihar Singh*, Kangujam Priyokumar Singh** . Cosmic String Universes Embedded with Viscosity[J]. Chin. Phys. Lett., 2011, 28(10): 1160-1163
[12] Atul Tyagi, Keerti Sharma. Bianchi Type-V Magnetized String Cosmological Model with Variable Magnetic Permeability for Viscous Fluid distribution[J]. Chin. Phys. Lett., 2010, 27(8): 1160-1163
[13] Atul Tyagi, Keerti Sharma, Payal Jain. Bianchi Type-IX String Cosmological Models for Perfect Fluid Distribution in General Relativity[J]. Chin. Phys. Lett., 2010, 27(7): 1160-1163
[14] Gamal G. L. Nashed, . Cylindrically Symmetric Solution in Teleparallel Theory[J]. Chin. Phys. Lett., 2010, 27(10): 1160-1163
[15] LI Fang-Yu, YANG Nan. Phase and Polarization State of High-Frequency Relic Gravitational Waves[J]. Chin. Phys. Lett., 2009, 26(5): 1160-1163
Viewed
Full text


Abstract