Original Articles |
|
|
|
|
Resonant Tunnelling and Storage of Electrons in Si Nanocrystals within a-SiNx/nc-Si/a-SiNx Structures |
WANG Xiang;HUANG Jian;ZHANG Xian-Gao;DING Hong-Lin;YU Lin-Wei, HUANG Xin-Fan;LI Wei;XU Jun;CHEN Kun-Ji |
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 |
|
Cite this article: |
WANG Xiang, HUANG Jian, ZHANG Xian-Gao et al 2008 Chin. Phys. Lett. 25 1094-1097 |
|
|
Abstract The a-SiNx/nanocrystalline silicon (nc-Si)/a-SiNx sandwiched structures with asymmetric double-barrier are fabricated in a plasma enhanced chemical vapour deposition (PECVD) system on p-type Si substrates. The nc-Si layer in thickness 5nm is fabricated from a hydrogen-diluted silane gas by the layer-by-layer deposition technique. The thicknesses of tunnel and control SiNx layers are 3nm and 20nm, respectively. Frequency-dependent capacitance spectroscopy is used to study the electron tunnelling and the storage in the sandwiched structures. Distinct frequency-dependent capacitance peaks due to electrons tunnelling into the nc-Si dots and capacitance-voltage (C-V) hysteresis characteristic due to electrons storage in the nc-Si dots are observed with the same sample. Moreover, conductance peaks have also been observed at the same voltage region by conductance-voltage (G-V) measurements. The experimental results demonstrate that electrons can be loaded onto nc-Si dots via resonant tunnelling and can be stored in our a-SiNx/nc-Si/a-SiNx structures.
|
Keywords:
73.63.Kv
73.40.Qv
73.43.Jn
|
|
Received: 25 December 2007
Published: 27 February 2008
|
|
PACS: |
73.63.Kv
|
(Quantum dots)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.43.Jn
|
(Tunneling)
|
|
|
|
|
[1] Negishi R, Hasegawa T, Terabe K, Aono M, Tanaka H, Ogawa Tand Ozawa H 2007 Appl. Phys. Lett. 90 223112 [2] Lockwood R, Hryciw A and Meldrum A 2006 Appl. Phys. Lett.89 263112 [3] Cho C H, Kim B H and Park S J 2006 Appl. Phys. Lett. 89013116 [4] Kim T W, Cho C H, Kim B H and Park S J 2006 Appl. Phys.Lett. 88 123102 [5] Lin M C, Aravind K, Wu C S, Wu Y P, Kuan C H, Kuo W andChen C D 2007 Appl. Phys. Lett. 90 032106 [6] Park N M, Kim S H, Maeng S and Park S J 2006 Appl. Phys.Lett. 89 153117 [7] Choi S, Yang H, Chang M, Baek S and Hwang H 2005 Appl.Phys. Lett. 86 251901 [8] Tiwari S, Rama F, Hanafi H, Hartstein A, Crabbe E F andChan K 1996 Appl. Phys. Lett. 68 1377 [9] Tiwari S, Rama F, Chan K, Shi L and Hanafi H 1996 Appl.Phys. Lett. 69 1232 [10] Dai M, Chen K, Huang X F, Wu L C and Chen K J 2004 J.Appl. Phys. 95 640 [11] Wu L C, Dai M, Huang X F, Li W and Chen K J 2004 J. Vac.Sci. Technol. B 22 678 [12] Halima K M, Mohammad S, Kazuaki S and Makoto I 2007Physica E 36 123 [13] Ravindran R, Gangopadhyay K and Gangopadhyay S 2006 Appl.Phys. Lett. 89 263511 [14] Liss B and Engstrom 1995 J. Appl. Phys. 78 1824 [15] Nicollian E H and Goetzberger A 1967 Bell Syst. Technol.J. 46 1055 [16] Song J, Wang J M, Yu L W, Huang X F, Li W, Chen K J2007 Res. Prog. Solid State Electron. {\bf 27 468 (in Chinese) [17] Shi J J, Wu L C, Huang X F, Liu J Y, Ma Z Y, Li W, Li XF, Xu J, Wu D, Li A D and Chen K J 2002 Solid State Commun. 123 437 [18] Nicollian E H and Brews J R 1982 MOS Physics andTechnology (Now York: Wiley) [19] Ng T H, Chim W K and Choi W K 2006 Appl. Phys. Lett. 88113112 [20] Huang S, Banerjee S, Tung R T and Oda S 2003 J. Appl.Phys. 93 576 [21] Huang S, Banerjee S, Tung R T and Oda S 2003 J. Appl.Phys. 94 7261 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|