Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 1060-1063    DOI:
Original Articles |
First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains
CHEN Jing-Zhe;ZHANG Jin;HAN Ru-Shan
School of Physics, Peking University, Beijing 100871
Cite this article:   
CHEN Jing-Zhe, ZHANG Jin, HAN Ru-Shan 2008 Chin. Phys. Lett. 25 1060-1063
Download: PDF(355KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Combining the non-equilibrium Green's function method and density functional theory, we provide a first-principle scheme to calculate the universal conductance fluctuation (UCF) in quasi one-dimensional monatomic chains subject to a magnetic field. Our results show that for these monatomic chains, the amplitude of the UCF is much smaller than the previous theoretical prediction for mesoscopic conductors by Lee et al. [Phys. Rev. Lett. 55 (1985) 1622; Phys. Rev. B 35 (1987) 1039] The reason is that the ergodic hypothesis fails in these nanowires due to the confinement of geometry. We ascribe the phenomenon to the flux-dependent density of states fluctuation.
Keywords: 71.15.-m      31.15.-p     
Received: 07 October 2007      Published: 27 February 2008
PACS:  71.15.-m (Methods of electronic structure calculations)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/01060
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jing-Zhe
ZHANG Jin
HAN Ru-Shan
[1] Fedrov G 2005 Phys. Rev. Lett. 94 66801
[2] Tserkovnyak Y and Halperin B I 2006 Phys. Rev. B 74 245327
[3] Vila L, Giraud R, Thevenard L, Lema\^\i tre A, Pierre Fet al 2007 Phys. Rev. Lett. 98 027204
[4] Kong J, Yenilmez E, Tombler T W, Kim W, Dai H J et al 2001 Phys. Rev. Lett. 87 106801
[5] Liang W J, Bockrath M, Bozovic D, Hafner J H et al 2001 Nature 411 665
[6] Langer L, Bayot L, Grivei E et al 1996 Phys. Rev. Lett. 76 479
[7] Man H T and Morpurgo A F 2005 Phys. Rev. Lett. 95 026801
[8] Hod O, Rabani E and Bare R 2006 Accounts Chem. Res. 39 109
[9] Stone A D 1985 Phys. Rev. Lett. 54 2692
[10] Lee P A and Stone A D 1985 Phys. Rev. Lett. 55 1622
[11] Webb R A, Washburn S and Umbach C P 1988 Phys. Rev. B 37 8455
[12] Lee P A, Stone A D and Fukuyama H 1987 Phys. Rev. B 35 1039
[13] Taylor J, Guo H and W J 2001 Phys. Rev. B 63 245407
[14] Xue Y Q, Datta S and Ratner M A 2002 Chem. Phys. 281 151
[15] London F 1937 J. Phys. Radium 8 397
[16] Ditchfield R 1974 Mol. Phys. 27 789
[17] Pople J A 1962 J. Chem. Phys. 37 53
[18] Chen J Z, Zhang J et al 2007 Chin. Phys. (accepted)
[19] Agr\"a it N, Yeyatib A L and Ruitenbeeck J M V 2003 Phys. Rep. 377 81
[20] Kozub V I, Caro J and Holweg P A M 1994 Phys. Rev. B 50 15126
[21] Roche S and Saito R 2001 Phys. Rev. Lett. 87 246803
[22] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
[23] Ventra M D, Pantelides S T and Lang N D 2000 Phys. Rev.Lett. 84 979
[24] Emberly E G and Kirczenow G 1998 Phys. Rev. B 58 10911
[25] Zhang J X, Hou S M, Li R, Qian Z K et al 2005 Nanotechnology 16 3057
[26] Hou S M, Li R , Qian Z K, Zhang J X et al 2005 J. Phys.Chem. A 109 8356
Related articles from Frontiers Journals
[1] CHENG Fang, LIU Ting-Yu**, ZHANG Qi-Ren, QIAO Hai-Ling, ZHOU Xiu-Wen . Computer Simulation of the Electronic Structures and Absorption Spectra for a KMgF3 Crystal Containing a Potassium Vacancy[J]. Chin. Phys. Lett., 2011, 28(3): 1060-1063
[2] LIU Hong-Sheng, FANG Xiao-Yong, SONG Wei-Li, HOU Zhi-Ling, LU Ran, YUAN Jie, CAO Mao-Sheng. Modification of Band Gap of -SiC by N-Doping[J]. Chin. Phys. Lett., 2009, 26(6): 1060-1063
[3] CHEN Jing-Zhe, CHEN Xing, LIU Guang-Hua, HAN Ru-Shan. Electron Orbital Magnetic Moments in the Armchair Carbon Nanotubes[J]. Chin. Phys. Lett., 2008, 25(8): 1060-1063
[4] YANG Xi-Feng, LIU Zhao-Lin, CHEN Ping-Ping, CHEN Xiao-Shuang, LI Tian-Xin, LU Wei. Broadening of Photoluminescence by Nonhomogeneous Size Distribution of Self-Assembled InAs Quantum Dots[J]. Chin. Phys. Lett., 2008, 25(8): 1060-1063
[5] WANG Xi-En, LIU Ting-Yu, ZHANG Qi-Ren, ZHANG Hai-Yan, SONG Min, GUOXiao-Feng, YIN Ji-Gang. First Principles Study on Electronic Structures of Mn2+:CdMoO4 Crystals[J]. Chin. Phys. Lett., 2008, 25(3): 1060-1063
[6] I. I. Guseinov. One-Range Addition Theorems in Terms of Ψα -ETOs for STOs and Coulomb--Yukawa Like Correlated Interaction Potentials of Integer and Noninteger Indices[J]. Chin. Phys. Lett., 2008, 25(12): 1060-1063
[7] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 1060-1063
[8] CHEN Jian-Yu, ZHANG Qi-Ren, LIU Ting-Yu, SHAO Ze-Xu, PU Chun-Ying. Electronic Structures of PbMoO4 Crystals with F-Type Colour Centres[J]. Chin. Phys. Lett., 2007, 24(6): 1060-1063
[9] WU Xue-Wei, NIU Dong-Lin, LIU Xiao-Jun. Photoinduced Reconstruction of Electronic Structure in Half-Metal CrO2[J]. Chin. Phys. Lett., 2007, 24(12): 1060-1063
[10] BIAN Xue-Bin, QIAO Hao-Xue, SHI Ting-Yun. B-Spline with Symplectic Algorithm Method for Solution of Time-Dependent Schrödinger Equations[J]. Chin. Phys. Lett., 2006, 23(9): 1060-1063
[11] MA Chun-Lan, PAN Tao. Electronic Structures of the Filled Tetrahedral Semiconductor Li3AlN2[J]. Chin. Phys. Lett., 2006, 23(1): 1060-1063
[12] ZHANG Ying, GAO Ben-Qing. Propagation of Cylindrical Waves in Media of Time-Dependent Permittivity[J]. Chin. Phys. Lett., 2005, 22(2): 1060-1063
[13] Kazuhiro Ishida. Molecular Integral for the Double Electron-Repulsion Potential: A Closed Form Underived for Forty Years[J]. Chin. Phys. Lett., 2005, 22(12): 1060-1063
[14] XU Tian, CAO Zhuang-Qi, OU Yong-Cheng, ZHU Guo-Long. Accurate Bound-State Spectra for Hydrogenic Donors in GaAs--(Ga, Al)As Quantum Dots[J]. Chin. Phys. Lett., 2005, 22(11): 1060-1063
[15] TANG Shao-Qiang, ZHANG Da-Peng. Pseudo-Hydrodynamic Approximation for Transient Computation of Energy-Transport Models in Semiconductors[J]. Chin. Phys. Lett., 2005, 22(10): 1060-1063
Viewed
Full text


Abstract