Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 1052-1055    DOI:
Original Articles |
A Modified Free Volume Model for Characterizing of Rate Effect in Bulk Metallic Glasses
LIU Long-Fei1,2;DAI Lan-Hong2;BAI Yi-Long2
1Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan 4112012State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
LIU Long-Fei, DAI Lan-Hong, BAI Yi-Long 2008 Chin. Phys. Lett. 25 1052-1055
Download: PDF(138KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the plastic deformation and constitutive behaviour of bulk metallic glasses (BMGs). A dimensionless Deborah number DeID=tr/ti is
proposed to characterize the rate effect in BMGs, where tr is the structural relaxing characteristic time of BMGs under shear load, ti is the macroscopic imposed characteristic time of applied stress or the characteristic time of macroscopic deformation. The results demonstrate that the modified free volume model can characterize the strain rate effect in BMGs effectively.
Keywords: 62.20.-x      62.20.Dc      61.43.Er      72.40.+i     
Received: 25 September 2007      Published: 27 February 2008
PACS:  62.20.-x (Mechanical properties of solids)  
  62.20.Dc  
  61.43.Er (Other amorphous solids)  
  72.40.+i  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/01052
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Long-Fei
DAI Lan-Hong
BAI Yi-Long
[1] Inoue A et al 1989 Mater. Trans. JIM 30 965
[2] Johnson W L 1999 MRS Bull. 24 42
[3] Wang W H et al 2004 Mater. Sci. Engin. R 44 45
[4] Ashby M F and Greer A L 2006 Scripta Mater. 54321
[5] Pampillo C A 1972 Scripta Metall. 6 915
[6] Spaepen F 1977 Acta Metall. 25 407
[7] Argon A 1979 Acta Metall. 27 47
[8] Steif P S et al 1982 Acta Metall. 30 447
[9] Falk M L and Langer J S 1998 Phys. Rev. E 577192
[10] Langer J S 2006 Scripta Mater. 54 375
[11] Chen H S et al 2001 Mater. Trans. JIM 42 597
[12] Anand L and Su C 2005 J. Mech. Phys. Solids 53 1362
[13] Gilman J J 1973 J. Appl. Phys. 44 675
[14] Li J C M 1978 Metallic Glasses (Metals Park, OH:American Society for Metals) p 224
[15] Wei B C et al 2002 Acta Mater. 50 4357
[16] Bruck H A et al 1996 J Mater. Res. 11 503
[17] Mukai T et al 2002 Scripta Mater. 46 43
[18] Liu L F et al 2005 J. Non-Cryst. Solids 3513259
[19] Liu L F et al 2006 J. Mater. Res. 21 153
[20] Hufnagel T C et al 2002 J. Mater. Res. 171441
[21] Mukai T et al 2002 Intermetallics 10 1071
[22] Cohen M H and Turnbull D 1959 J. Chem. Phys. 31 1164
[23] Turnbull D and Cohen M H 1961 J. Chem. Phys. 34 120
[24] Turnbull D and Cohen M H 1970 J. Chem. Phys. 52 3038
[25] Huang R et al 2002 J. Mech. Phys. Solids 501011
[26] Reiner M 1964 Phys. Today 62
[27] Bai Y L et al 2003 China Particuology 1 7
[28] Bai Y L et al 2005 Appl. Mech. Rev. 58 372
[29] Dai L H et al 2004 Chin. Phys. Lett. 21 1593
[30] Dai L H et al 2005 Appl. Phys. Lett. 87141916
Related articles from Frontiers Journals
[1] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 1052-1055
[2] SU Wei, LOU Shu-Qin, YIN Guo-Lu. Theoretical Study of the Structural and Thermodynamic Properties of Amorphous SiO2 and Amorphous SiO2 with an Oxygen Defect Center[J]. Chin. Phys. Lett., 2012, 29(6): 1052-1055
[3] S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, J. J. de Miguel, M. Kerouad. Hysteresis Loops and Phase Diagrams of the Spin-1 Ising Model in a Transverse Crystal Field[J]. Chin. Phys. Lett., 2012, 29(1): 1052-1055
[4] JIN Min**, FANG Yong-Zheng, SHEN Hui, JIANG Guo-Jian, WANG Zhan-Yong, XU Jia-Yue . Mechanical Property Evaluation of GaAs Crystal for Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 1052-1055
[5] LIN Sheng-Xiong, LIU Xiu-Ru**, SHAO Chun-Guang, SHEN Ru, HONG Shi-Ming . Effect of Iodine Additive on Thermostability of Bulk Amorphous Sulfur Prepared by Rapid Compression[J]. Chin. Phys. Lett., 2011, 28(8): 1052-1055
[6] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 1052-1055
[7] CHEN Yao**, JIANG Yang, XU Pei-Qiang, MA Zi-Guang, WANG Xiao-Li, WANG Lu, JIA Hai-Qiang, CHEN Hong . Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(4): 1052-1055
[8] ZHANG Fu-Chun**, ZHANG Wei-Hu, DONG Jun-Tang, ZHANG Zhi-Yong . First-Principles Study of Fe-Doped ZnO Nanowires[J]. Chin. Phys. Lett., 2011, 28(12): 1052-1055
[9] O. Sahin**, A. R�, za Tuncdemir, H. Ali Cetinkara, H. Salih Guder, E. Sahin . Production and Mechanical Behaviour of Biomedical CoCrMo Alloy[J]. Chin. Phys. Lett., 2011, 28(12): 1052-1055
[10] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 1052-1055
[11] WANG Xue-Min, WU Wei-Dong**, WANG Yu-Ying, WANG Hai-Ping, GE Fang-Fang, TANG Yong-Jian, JU Xin . Ion-implanted Mechanism of the Deposition Process for Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 2011, 28(1): 1052-1055
[12] MA Dong-Fang, HOU Yan-Jun, CHEN Da-Nian**, WU Shan-Xing, WANG Huan-Ran . A Novel Impact Tension Testing for OFHC Copper Bars under Local Strain Controlled[J]. Chin. Phys. Lett., 2011, 28(1): 1052-1055
[13] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 1052-1055
[14] B. Y. Thakore, S. G. Khambholja, P. H. Suthar, N. K. Bhatt, A. R. Jani. Collective Modes and Elastic Constants of Liquid Al83Cu17 Binary Alloy[J]. Chin. Phys. Lett., 2010, 27(9): 1052-1055
[15] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 1052-1055
Viewed
Full text


Abstract