Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 1015-1018    DOI:
Original Articles |
Compressibility Effects on the Rayleigh--Taylor Instability Growth Rates
HE Yong1,2;HU Xi-Wei1;JIANG Zhong-He1
1Key Laboratory of Fusion and Advanced Electromagnetic Technology of Ministry of Education, Huazhong University of Science and Technology, Wuhan 4300742Department of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
HE Yong, HU Xi-Wei, JIANG Zhong-He 2008 Chin. Phys. Lett. 25 1015-1018
Download: PDF(131KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effects of two compressibility parameters, i.e. the ratio of specific heats and the equilibrium pressure at the interface, on the Rayleigh--Taylor instability (RTI) growth rates are studied under the same initial conditions, which include the mass, pressure profile, and density profile of the two superposed fluids. The results obtained reconcile the stabilizing and destabilizing effects of compressibility reported in the literature. The influences of the ratio of specific heats on the RTI growth rates are not only stabilized but also destabilized. The effects of the equilibrium pressure at the interface on the growth rates are destabilized.
Keywords: 52.35.Tc      52.30.Ex     
Received: 01 December 2007      Published: 27 February 2008
PACS:  52.35.Tc (Shock waves and discontinuities)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/01015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Yong
HU Xi-Wei
JIANG Zhong-He
[1] Rayleigh L 1883 Proc. London Math. Soc. 14170
[2] Chandrasekhar 1981 Hydrodynamic and HydromagneticStability (New York: Dover) pp 428--477
[3] Kilkenny J D, Glendinning S G, Haan S W, Hammel B A, LindlJ D, Munro D, Remington B A, Weber S V, Knauer J P and Verdon C P1994 Phys. Plasmas 1 1379
[4] Remington B A, Weber S V,Marinak M M, Haan S W, Kilkenny JK, Wallace R J and Dimonte G 1995 Phys. Plasmas 2 241
[5] Sharp D H 1984 Physica D 12 3
[6] Bernstein I B and Book D L 1983 Phys. Fluids 26 453
[7] Baker L 1983 Phys. Fluids 26 950
[8] Livescu D 2004 Phys. Fluids 16 118
[9] Ribeyre X, Tikhonchuk V T and Bouquet S 2004 Phys.Fluids 16 4661
[10] Ribeyre X, Tikhonchuk V T and Bouquet S 2005 Phys.Fluids 17 069102
[11] Qin C S, Zhang F G and Li Y 2004 Acta MechanicaSinica 36 655
[12] Munro D 1988 Phys. Rev. A 38 1433
[13] Kamke E 1977 Handbook of Ordinary DifferentialEquations (Beijing: Science Press) pp 254--258 (in Chinese)
Related articles from Frontiers Journals
[1] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 1015-1018
[2] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1015-1018
[3] LI Bo, **, CHEN Yan-Jun, LI Xing . Standing Shocks in the Inner Slow Solar Wind[J]. Chin. Phys. Lett., 2011, 28(5): 1015-1018
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 1015-1018
[5] YU Xin, ZHAO Qiang. Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere[J]. Chin. Phys. Lett., 2009, 26(3): 1015-1018
[6] WANG Yun-Liang, ZHOU Zhong-Xiang, LU Yan-Zhen, NI Xiao-Dong, SHEN Jiang, ZHANG Yu. Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma[J]. Chin. Phys. Lett., 2008, 25(8): 1015-1018
[7] DING Jian, LI Yi, WANG Shui. Numerical Simulation of Solitary Kinetic Alfvén Waves[J]. Chin. Phys. Lett., 2008, 25(7): 1015-1018
[8] S. A. Khan, Q. Haque. Electrostatic Nonlinear Structures in Dissipative Electron--Positron--Ion Quantum Plasmas[J]. Chin. Phys. Lett., 2008, 25(12): 1015-1018
[9] JIANG Zhong-He, HE Yong, HU Xi-Wei, LV Jian-Hong, HU Ye-Min. Structures of Strong Shock Waves in Dense Plasmas[J]. Chin. Phys. Lett., 2007, 24(8): 1015-1018
[10] LV Jian-Hong, HE Yong, HU Xi-Wei. Electrostatic Instabilities at High Frequency in a Plasma Shock Front[J]. Chin. Phys. Lett., 2007, 24(4): 1015-1018
[11] YANG Lei, WU De-Jin. Effects of Charge in Heavy Ions on Solitary Kinetic Alfvén Waves in Double-Ion Plasmas[J]. Chin. Phys. Lett., 2006, 23(8): 1015-1018
[12] HE Yong, HU Xi-Wei, HU Ye-Min. Jump Conditions of a Shock with Current in Cylindrical Non-Neutral Plasma[J]. Chin. Phys. Lett., 2006, 23(1): 1015-1018
[13] WANG Ai-Ke, H. Sanuki, DONG Jia-Qi, F. Zonca, K. Itoh. Magnetic Field Gradient and Curvature-Driven Drift Modes in Toroidal Plasmas[J]. Chin. Phys. Lett., 2004, 21(8): 1015-1018
[14] Q. Haque, H. Saleem. Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma[J]. Chin. Phys. Lett., 2004, 21(5): 1015-1018
[15] HU Ye-Min, HU Xi-Wei. Properties and Structure of a Plasma Non-Neutral Shock[J]. Chin. Phys. Lett., 2004, 21(1): 1015-1018
Viewed
Full text


Abstract