Chin. Phys. Lett.  2008, Vol. 25 Issue (3): 981-984    DOI:
Original Articles |
Room-Temperature Photonic Crystal Laser in H3 Cavity on InGaAsP/InP Slab
REN Gang;ZHENG Wan-Hua;ZHANG Ye-Jin;XING Ming-Xin;WANG Ke;DU Xiao-Yu;CHEN Liang-Hui
Nano-Optoelectronics Lab, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
REN Gang, ZHENG Wan-Hua, ZHANG Ye-Jin et al  2008 Chin. Phys. Lett. 25 981-984
Download: PDF(2391KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricate and investigate two-dimensional photonic crystal H3 microcavities in an InGaAsP slab. The lasing action at room temperature is observed. The lasering threshold is 7mW under the pulsed pump of 0.75% duty cycle. The Q factor and the lasing mode characteristics are simulated by three-dimensional finite difference time domain method. The simulation result matches well with the experiment.
Keywords: 42.70.Qs      42.55.Tv      42.60.Da     
Received: 11 October 2007      Published: 27 February 2008
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I3/0981
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Gang
ZHENG Wan-Hua
ZHANG Ye-Jin
XING Ming-Xin
WANG Ke
DU Xiao-Yu
CHEN Liang-Hui
[1] Purcell E M 1946 Phys. Rev. 69 681
[2] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[3] John S 1987 Phys. Rev. Lett. 58 2486
[4] Krauss T F and De La Rue R M 1999 Prog. Quantum Electron. 23 51
[5] Painter O, Lee R K et al 1999 Science 284 1819
[6] Akahane Y, Asano T, Song B S and Noda S 2003 Nature 425 944
[7] Zheng W H, Ren G, Ma X T et al 2006 J. Crystal Growth 292 341
[8] Cai X H, Zheng W H, Ma X T et al 2005 Chin. Phys. Lett. 22 2290
[9] Sugitatsu A, Asano T and Noda S 2005 Appl. Phys. Lett. 86 171106
[10] Loncar M, Scherer A and Qiu Y M 2003 Appl. Phys. Lett. 82 4648
[11] Lee P T et al 2002 Appl. Phys. Lett. 81 3311
[12] Coldren L A and Corzine S W 1995 Diode Lasers andPhotonic Integrated Circuits (New York: Wiley)
[13] Joannopoulos J D, Meade R D and Winn J N 1995 Photonic Crystals (Princeton, NJ: Princeton University Press)
[14] Painter O et al 1999 IEEE J. Lightwave Technol. 172082
[15] Ryu H Y and Notomi M 2004 Opt. Express 12 1708
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 981-984
[2] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 981-984
[3] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 981-984
[4] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 981-984
[5] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 981-984
[6] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 981-984
[7] SU Zhou-Ping**,JI Zhi-Cheng,ZHU Zhuo-Wei,QUE Li-Zhi,ZHU Yun. Phase Locking of Laser Diode Array by Using an Off-Axis External Talbot Cavity[J]. Chin. Phys. Lett., 2012, 29(5): 981-984
[8] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 981-984
[9] ZHOU Liang,DUAN Kai-Liang**. Phases in a General Chaotic Three-Coupled-Laser Array[J]. Chin. Phys. Lett., 2012, 29(4): 981-984
[10] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 981-984
[11] LIU Hou-Kang,XUE Yu-Hao,LI Zhen,HE Bing**,ZHOU Jun**,DING Ya-Qian,JIAO Meng-Li,LIU Chi,QI Yun-Feng,WEI Yun-Rong,DONG Jing-Xing,LOU Qi-Hong. The Improved Power of the Central Lobe in the Beam Combination and High Power Output[J]. Chin. Phys. Lett., 2012, 29(4): 981-984
[12] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 981-984
[13] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 981-984
[14] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 981-984
[15] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 981-984
Viewed
Full text


Abstract