Original Articles |
|
|
|
|
Ported from Self-Similar Analytic Solutions of Ginzburg--Landau Equation with Varying Coefficients |
FENG Jie1;XU Wen-Cheng2;LI Shu-Xian2;LIU Wei-Ci2;LIU Song-Hao2 |
1School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 5100062Lab of Photonic information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 |
|
Cite this article: |
FENG Jie, XU Wen-Cheng, LI Shu-Xian et al 2008 Chin. Phys. Lett. 25 970-973 |
|
|
Abstract Employing the technique of symmetry reduction of analytic method, we solve the Ginzburg--Landau equation with varying nonlinear, dispersion, gain coefficients, and gain dispersion which originates from the limiting effect of transition bandwidth in the realistic doped fibres. The parabolic asymptotic self-similar analytical solutions in gain medium of the normal GVD is found for the first time to our best knowledge. The evolution of pulse amplitude, strict linear phase chirp and effective temporal width are given with self-similarity results in longitudinal nonlinearity distribution and longitudinal gain fibre. These analytical solutions are in good agreement with the numerical simulations. Furthermore, we theoretically prove that pulse evolution has the characteristics of parabolic asymptotic self-similarity in doped ions dipole gain fibres.
|
Keywords:
42.65.Jx
42.65.Re
42.65.Tg
|
|
Received: 22 October 2007
Published: 27 February 2008
|
|
PACS: |
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
|
|
|
[1]Fermann M E et al %, Kruglov V I, Thomsen B C, Dudley J M and Harvey J D2000 Phys. Rev. Lett. 84 6010 [2] Kruglov V I et al %, Peacock A C, Harvey J D and Dudley J M2000 Opt.Lett. 25 1753 [3] Kruglov V I et al %, Peacock A C, Harvey J D and Dudley J M2002 Opt.Soc. Am. B 19 461 [4] Feng J et al %, Xu W C, Li S X and Liu S H2007 Sci. Chin. G 37 427 [5] C Menyuk R et al %, Levi D and Winternitz P1992 Phys. Rev. Let. 69 3048 [6] Feng J et al %, Xu W C and Liu S H et al2006 Laser Opt. Prog. 43 26 (in Chinese) [7] Finot C et al %, Millot G, Billet C and Dudley J M2003 Opt. Express 11 1547 [8] Dupriez P et al %, Finot C and Malinowski A et al 2006 Opt. Lett. 14 9611 [9] Wu J et al %, Tang D Y, Zhao L M, and Chan C C2006 Phys. Rev. E 74 046605 [10] Finot C, Pitois S, and Millot G 2005 Opt. Lett. 301776 [11] Chang G Q et al %and Galvanauskas A et al2004 Opt. Lett. 292647 [12] Hirooka T and Nakazawa M 2004 Opt. Lett. 29 498 [13] Finot C and Parmigiani F et al 2006 Opt Express 143161 [14] Chen S H et al %, Lin Y, Guo D S, and Lu P2005 Phys. Rev. E 72 016622 [15] Parmigiani F et al %, Finot C and Mukasa K2006 Opt. Express 14 7617 [16] Kruglov V I et al %, M\'echin D and Harvey J D2003 Phys. Rev.Lett. 90 113902 [17] Sergey C P and Agrawal G P 2007 Opt. Express 15 2963 [18] Zheng H J and Liu S L 2006 Chin. Phys. 15 1831 [19] Finot C and Millot G 2005 Opt. Express 13 5825 [20] Xu W C et al %, Zhang S M and Liu S H et al2002 Chin. Phys. 11 39 [21] M\'echin D et al %, Im S H, Kruglov V I and Harvey J D2006 Opt. Lett. 31 2106 [22] Kruglov V I et al %, Peacock A C and Harvey J D2006 Opt. Soc. Am. B 23 2541 [23] Agrawl G P 2001 Nonlinear Fiber Optics, andApplications of Nonlinear Fiber Optics (Boston: Academic) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|