Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1850-1853    DOI:
Original Articles |
Influence of Strain-Reducing Layer on Strain Distribution of Self-Organized InAs/GaAs Quantum Dot and Redshift of Photoluminescence Wavelength
LIU Yu-Min1,2;YU Zhong-Yuan1,2;REN Xiao-Min2
1School of Science, Beijing University of Posts and Telecommunication, Beijing 1008762Key Laboratory of Optical Communication and Lightwave Technologies of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
LIU Yu-Min, YU Zhong-Yuan, REN Xiao-Min 2008 Chin. Phys. Lett. 25 1850-1853
Download: PDF(458KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A systematic investigation about the strain distributions around the InAs/GaAs quantum dots using the finite element method is presented. A special attention is paid to influence of an In0.2Ga0.8As strain reducing layer. The numerical results show that the horizontal- and vertical-strain components and the biaxial strain are reinforced in the InAs quantum
dot due to the strain-reducing layer. However, the hydrostatic strain in the quantum dot is reduced. In the framework of eight-band k∙p theory, we study the band edge modifications due to the presence of a strain reducing layer. The results demonstrate that the strain reducing layer yields the decreasing band gap, i.e., the redshift phenomenon is observed in experiments. Our calculated results show that degree of the redshift will increase with the
increasing thickness of the strain-reducing layer. The calculated results can explain the experimental results in the literature, and further confirm that the long wavelength emission used for optical fibre communication is realizable by adjusting the dependent parameters. However, based on the calculated electronic and heavy-hole wave function distributions, we find that the intensity of photoluminescence will exhibits some variations with the
increasing thickness of the strain-reducing layer.
Keywords: 73.63.-b      73.63.Kv      72.25.Dc      85.35.Gv     
Received: 22 August 2007      Published: 29 April 2008
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.63.Kv (Quantum dots)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  85.35.Gv (Single electron devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01850
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yu-Min
YU Zhong-Yuan
REN Xiao-Min
[1]Chang J F et al 2004 Acta Phys. Sin. 53 978 (inChinese)
[2]Wang Z G 2002 J. Synth. Crystal. 31 208 (inChinese)
[3] Li S S and Xia J B 2006 J. Appl. Phys. 100083714
[4] Jun T et al 2002 J. Crystal Growth 237-2391296
[5] Le E C et al 2003 Phys. Rev. B 67 165303
[6] Kouichi A et al 2006 Physica E 32 81-84
[7] Lin C H et al 2007 Appl. Phys. Lett. 90 063102
[8]Liu Y M et al 2006 Acta Phys. Sin. 55 5423 (inChinese)
[9]Liu Y M, Yu ZY and Huang Y Z 2007 J. University Sci.Technol. 14 477 (Beijing)
[10]Liu Y M et al 2006 The Int. J. Mod. Phys. B 204899
[11]Califano M and Harrison P 2001 J. Appl. Phys. 91 390
[12]Pryor C E and Pistol M E 2005 Phys. Rev. B 72205311
Related articles from Frontiers Journals
[1] PENG Juan**,LI Shu-Shen. The Electronic Structure of Coupled Semiconductor Quantum Dots Arranged as a Graphene Hexagonal Lattice under a Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(4): 1850-1853
[2] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 1850-1853
[3] PAN Li-Jun, JIA Yu, **, SUN Qiang, HU Xing . Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study[J]. Chin. Phys. Lett., 2011, 28(8): 1850-1853
[4] Samad Javidan* . Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(8): 1850-1853
[5] JIA Zhi-Chun, HU Zhen-Peng, ZHAO Ai-Di, LI Zhen-Yu, LI Bin** . Scanning Tunneling Spectroscopy of Metal Phthalocyanines on a Au(111) Surface with a Ni Tip[J]. Chin. Phys. Lett., 2011, 28(7): 1850-1853
[6] WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi . Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. Chin. Phys. Lett., 2011, 28(5): 1850-1853
[7] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1850-1853
[8] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 1850-1853
[9] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 1850-1853
[10] WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. Chin. Phys. Lett., 2010, 27(8): 1850-1853
[11] ZHANG Xian-Gao, CHEN Kun-Ji, FANG Zhong-Hui, QIAN Xin-Ye, LIU Guang-Yuan, JIANG Xiao-Fan, MA Zhong-Yuan, XU Jun, HUANG Xin-Fan, JI Jian-Xin, HE Fei, SONG Kuang-Bao, ZHANG Jun, WAN Hui, WANG Rong-Hua. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment[J]. Chin. Phys. Lett., 2010, 27(8): 1850-1853
[12] HUO Qiu-Hong, WANG Ru-Zhi, CHEN Si-Ying, XUE Kun, YAN Hui. Spin Transport in a Magnetic Superlattice with Broken Two-Fold Symmetry[J]. Chin. Phys. Lett., 2010, 27(6): 1850-1853
[13] HUANG Qing-Song, DONG Dong-Qing, XU Jian-Ping, ZHANG Xiao-Song, ZHANG Hong-Min, LI Lan. White Emitting ZnS Nanocrystals: Synthesis and Spectrum Characterization[J]. Chin. Phys. Lett., 2010, 27(5): 1850-1853
[14] SU Wen-Yong, LUO Yi. Weak Gate Effect in 1,3-Benzenedithiol Molecular Device[J]. Chin. Phys. Lett., 2010, 27(4): 1850-1853
[15] TANG Guang-Hua, XU Bo, JIANG Li-Wen, KONG Jin-Xia, KONG Ning, LIANG De-Chun, LIANG Ping, YE Xiao-Ling, JIN Peng, LIU Feng-Qi, CHEN Yong-Hai, WANG Zhan-Guo. A Photovoltaic InAs Quantum-Dot Infrared Photodetector[J]. Chin. Phys. Lett., 2010, 27(4): 1850-1853
Viewed
Full text


Abstract