Chin. Phys. Lett.  2008, Vol. 25 Issue (5): 1905-1907    DOI:
Original Articles |
Heteroclinic Bifurcation of Strongly Nonlinear Oscillator
ZHANG Qi-Chang;WANG Wei;LI Wei-Yi
Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072State key Laboratory of Engines, Tianjin University, Tianjin 300072
Cite this article:   
ZHANG Qi-Chang, WANG Wei, LI Wei-Yi 2008 Chin. Phys. Lett. 25 1905-1907
Download: PDF(172KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Analytical prediction of heteroclinic bifurcation of the strongly nonlinear oscillator is presented by using the extended normal form method. We consider the approximate periodic solution of the system subject to the quintic nonlinearity by introducing the undetermined fundamental frequency. For the occurrence of heteroclinicity, the bifurcation criterion is accomplished. It depends on the contact of the limit cycle with the saddle equilibrium. As is illustrated, the explicit application shows that the new results coincide very well with the results of numerical simulation when disturbing parameter is of
arbitrary magnitude.
Keywords: 82.40.Bj      47.20.Ky      02.30.Hq     
Received: 20 February 2008      Published: 29 April 2008
PACS:  82.40.Bj (Oscillations, chaos, and bifurcations)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I5/01905
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Qi-Chang
WANG Wei
LI Wei-Yi
[1]Melnikov V K 1963 Trans. Moscow Math. Soc. 12 1
[2] Guckenheimer J, Holmes P J 1983 NonlinearOscillations, Dynamical Systems and Bifurcations of Vector Fields(New York: Springer) p 369
[3] Belhaq M and Fahsi A 1996 Mech. Res. Commun. 23381
[4] Belhaq M 1998 Mech. Res. Commun. 25 49
[5] Belhaq M, Lakrad F and Fahsi A 1999 Nonlinear Dynam. 18 303
[6] Xu Z, Chen S H 1997 Acta Scientiarum NaturaliumUniversitatis Sunyatsen 36 6 (in Chinese)
[7] Belhaq M, Fiedler B and Lakrad F 2000 NonlinearDynam. 23 67
[8] Zhang Y M, Lu Q S 2003 Nonlinear Sci. Numer.Simulat. 8 1
[9] Leung A Y T, Zhang Q C 1998 J. Sound Vib. 213907
[10] Hao S Y, Wang W, Zhang Q C 2007 J. Vibrat.Engin. 422 20 (in Chinese)
[11] Nayfeh A H 1983 Method of Normal Forms (New York: Wiley) p 14
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1905-1907
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 1905-1907
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 1905-1907
[4] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 1905-1907
[5] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 1905-1907
[6] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 1905-1907
[7] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 1905-1907
[8] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 1905-1907
[9] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 1905-1907
[10] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 1905-1907
[11] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 1905-1907
[12] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 1905-1907
[13] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 1905-1907
[14] CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye, WANG Wei-Chi. Cytoplasmic Ca2+ Dynamics under the Interplay between the Different IP3R Gating Models and the Plasma Membrane Ca2+ Influx[J]. Chin. Phys. Lett., 2010, 27(1): 1905-1907
[15] MENG Pan, LU Qi-Shao. Dynamical Effect of Calcium Pump on Cytosolic Calcium Bursting Oscillations with IP3 Degradation[J]. Chin. Phys. Lett., 2010, 27(1): 1905-1907
Viewed
Full text


Abstract