Chin. Phys. Lett.  2008, Vol. 25 Issue (6): 2128-2131    DOI:
Articles |
Flat Solitary Waves due to a Submerged Body Moving in a Stratified Fluid
WEI Gang1,2, SU Xiao-Bing1;LU Dong-Qiang2;YOU Yun-Xiang3;DAI Shi-Qiang2
1Faculty of Science, PLA University of Science and Engineering, Nanjing 2111012Shanghai Institute of Applied Mathematics and Mechanics, ShanghaiUniversity, Shanghai 2000723School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030
Cite this article:   
WEI Gang, SU Xiao-Bing, LU Dong-Qiang et al  2008 Chin. Phys. Lett. 25 2128-2131
Download: PDF(207KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A theoretical model for interaction of a submerged moving body with the
conjugate flow in a three-layer fluid is proposed to depict the internal
flat solitary wave, which is observed in experiments conducted by the present authors. A set of coupled nonlinear algebraic equations is derived for the interfacial displacements. The numerical results indicate that (a) the conjugate flow due to a two-dimensional body moving at the bottom possesses an apparent behaviour with two convex interfaces; (b) the solution satisfying the existence criterion is always unique near the relatively stable state of system. Theoretical analysis is qualitatively consistent with the experimental results obtained.
Keywords: 47.55.Hd      47.35.Fg      47.35.Lf      94.05.Rx     
Received: 30 January 2008      Published: 31 May 2008
PACS:  47.55.Hd (Stratified flows)  
  47.35.Fg (Solitary waves)  
  47.35.Lf (Wave-structure interactions)  
  94.05.Rx (Experimental techniques and laboratory studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I6/02128
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Gang
SU Xiao-Bing
LU Dong-Qiang
YOU Yun-Xiang
DAI Shi-Qiang
[1] Wu T Y 2001 Adv. Mech. 37 1 (in Chinese)
[2] Turkington B, Eydeland A and Wang S 1991 Stud. Appl.Math. 85 93
[3] Benjamin T B 1966 J. Fluid Mech. 25 241
[4] Lamb K G and Wan B 1998 Phys. Fluids 10 2061
[5] Lamb K G 2004 Phys. Fluids 16 4685
[6] Sha H and Vanden-Broeck J M 1993 Phys. Fluids A 5 2661
[7] Lamb K G 2000 Phys. Fluids 12 1070
[8] Rusas P O and Grue J 2002 Eur. J. Mech. Fluids B 21 185
[9] Wei G, Le J C and Dai S Q 2002 J. Hydrodynamics B 12 24
[10] Baines P M 1995 Topographic Effects in StratifiedFlows (Cambridge: Cambridge University Press) chap 3 p 96
[11] Kakutani T and Yamasaki N 1978 J. Phys. Soc. Jpn. 45 674
[12] Dai S Q 1982 Appl. Math. Mech. 3 721
[13] Grimshaw R, Pelinovsky E and Talipova T 1997 Nonlin.Process. Geophys. 4 237
Related articles from Frontiers Journals
[1] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 2128-2131
[2] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 2128-2131
[3] LI Dong-Long, ZHAO Jun-Xiao,. Exact Periodic Solitary Solutions to the Shallow Water Wave Equation[J]. Chin. Phys. Lett., 2009, 26(5): 2128-2131
[4] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 2128-2131
[5] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, LI Ying-Jun. Multimode Coupling Theory for Kelvin-Helmholtz Instability in Incompressible Fluid[J]. Chin. Phys. Lett., 2009, 26(1): 2128-2131
[6] SONG Jun, SONG Jin-Bao. Effects of Buoyancy on Langmuir Circulation[J]. Chin. Phys. Lett., 2008, 25(5): 2128-2131
[7] ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua, XU Tao, GAO Yi-Tian,. Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation[J]. Chin. Phys. Lett., 2008, 25(3): 2128-2131
[8] DAI Zheng-De, , LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 2128-2131
[9] ZHANG Chun-Yi, YAO Zhen-Zhi, ZHU Hong-Wu, XU Tao, LI Juan, MENG Xiang-Hua, GAO Yi-Tian. Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics[J]. Chin. Phys. Lett., 2007, 24(5): 2128-2131
[10] LIU Ping, JIA Man, LOU Sen-Yue,. A Discrete Lax-Integrable Coupled System Related to Coupled KdV and Coupled mKdV Equations[J]. Chin. Phys. Lett., 2007, 24(10): 2128-2131
Viewed
Full text


Abstract