Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 2922-2925    DOI:
Original Articles |
Acoustic Band Gaps in Three-Dimensional NaCl-Type Acoustic Crystals
FANG Nong-Yu, WU Fu-Gen, ZHANG Xin
Department of Experiment Education, Guangdong University of Technology, Guangzhou 510006
Cite this article:   
FANG Nong-Yu, WU Fu-Gen, ZHANG Xin 2008 Chin. Phys. Lett. 25 2922-2925
Download: PDF(344KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the acoustic band gaps (ABGs) for a geometry of three-dimensional complex acoustic crystals: the NaCl-type structure. By using the super cell method based on the plane-wave expansion method (PWE), we study the three configurations formed by water objects (either a sphere of different sizes or a cube) located at the vertices of simple cubic (SC) lattice and surrounded by mercury background. The numerical results show that ABGs larger than the original SC structure for all the three configurations can be obtained by adjusting the length-diameter ratio of adjacent objects but keeping the filling fraction (f=0.25) of the unit cell unchanged. We also compare our results with that of 3D solid composites and find that the ABGs in liquid composites are insensitive to the shapes as that in the solid composites. We further prove that the decrease of the translation group symmetry is more efficient in creating the ABGs in 3D water-mercury systems.
Keywords: 43.20.+g      63.20.-e      35.+d     
Received: 15 April 2008      Published: 25 July 2008
PACS:  43.20.+g (General linear acoustics)  
  63.20.-e (Phonons in crystal lattices)  
  43 (Acoustics)  
  35.+d  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/02922
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Nong-Yu
WU Fu-Gen
ZHANG Xin
[1] Sigalas M M and Economou E N 1992 J. Sound Vib. 158 377
[2] Ni Q and Cheng J C 2005 Chin. Phys. Lett. 222305
[3] Liu Z Y, Zhang X , Mao Y, Zhu Y Y, Yang Z, Chan C T andSheng P 2000 Science 289 1734
[4] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[5] Song B S, Noda S and Asano T 2003 Science 3001537
[6] Wu F G, Liu Z Y and Liu Y Y 2002 Phys. Rev. E 66 046628
[7] Zhong L H, Wu F G, Zhang X , Zhong H L and Zhong S 2005 Phys. Lett. A 339 164
[8] Min R, Wu F G, Zhong L H, Zhong H L and Zhong S 2006 J. Phys. D: Appl. Phys. 39 2272
[9] Goffaux C and Vigneron J P 2001 Physica B 296195
[10] Kushwaha M S and Djafari-Rouhani B 1996 J. Appl.Phys. 80 3191
[11] Biswas R, Sigalas M M and Ho K M 2002 Phys. Rev. B 65 205121
[12] Kushwaha M S and Halevi P 1997 J. Acoust. Soc. Am. 101 619
[13] Chen H Y, Luo X D and Ma H R 2007 Phys. Rev. B 75 024306
[14]Zhang X, Liu Z Y, Liu Y Y and Wu F G 2003 Phys.Lett. A 313 455
[15]Caballero D, Sanchez-Dehesa J, Rubio C, M\'artinez-SalaR, S\'anchez-P\'erez J V, Meseguer F and Llinares J 1999 Phys. Rev. E 60 6316
[16]Xu Z L, Wu F G, Mu Z F, Zhang X and Yao Y W 2007 J.Phys. D: Appl. Phys. 40 5584
[17] Ramprasad R and Shi N 2005 Appl. Phys. Lett. 87 111101
[18] Vasseury J O, Djafari-Rouhaniy B, Dobrzynskiy L andDeymierz P A 1997 J. Phys. Condens. Matter 9 7327
[19] Huang F and He Z 2007 Appl. Acoust. 26 107(in Chinese)
[20] Mu Z F, Wu F G, Zhang X and Zhong H L 2007 ActaPhys. Sin. 56 4694 (in Chinese)
Related articles from Frontiers Journals
[1] WANG Jian-Wei, WANG Gang, CHEN Sheng-Bing, WEN Ji-Hong. Broadband Attenuation in Phononic Beams Induced by Periodic Arrays of Feedback Shunted Piezoelectric Patches[J]. Chin. Phys. Lett., 2012, 29(6): 2922-2925
[2] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 2922-2925
[3] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 2922-2925
[4] CHEN Sheng-Bing**, WEN Ji-Hong, WANG Gang, HAN Xiao-Yun, WEN Xi-Sen . Locally Resonant Gaps of Phononic Beams Induced by Periodic Arrays of Resonant Shunts[J]. Chin. Phys. Lett., 2011, 28(9): 2922-2925
[5] DENG Ming-Xi**, XIANG Yan-Xun, LIU Liang-Bing . Time-Domain Second-Harmonic Generation of Primary Lamb-Wave Propagation in an Elastic Plate[J]. Chin. Phys. Lett., 2011, 28(7): 2922-2925
[6] QIN Hong-Yi**, WANG Wen-Yu, XIONG Zhao-Hua . A Simple Singlet Fermionic Dark-Matter Model Revisited[J]. Chin. Phys. Lett., 2011, 28(11): 2922-2925
[7] YU Li-Li**, SHOU Wen-De, HUI Chun** . Theoretical Calculation of a Focused Acoustic Field from a Linear Phased Array on a Concave Cylindrical Transducer[J]. Chin. Phys. Lett., 2011, 28(10): 2922-2925
[8] LE Yi, SHEN Yong**, XIA Jie . Calculation of Loudspeaker Cabinet Diffraction and Correction[J]. Chin. Phys. Lett., 2011, 28(10): 2922-2925
[9] ZHANG Bi-Xing, SHI Fang-Fang, WU Xian-Mei, GONG Jun-Jie, ZHANG Cheng-Guang. Imaging for Borehole Wall by a Cylindrical Linear Phased Array[J]. Chin. Phys. Lett., 2010, 27(9): 2922-2925
[10] CHENG Li-Ping, ZHANG Shu-Yi, GU Huan-Huan, ZHOU Feng-Mei, SHUI Xiu-Ji. Performance of Non-Contact Linear Actuators Driven by Surface Acoustic Waves*[J]. Chin. Phys. Lett., 2010, 27(7): 2922-2925
[11] LI Yong, HOU Zhi-Lin, FU Xiu-Jun, Badreddine M Assouar. Symmetric and Anti-Symmetric Lamb Waves in a Two-Dimensional Phononic Crystal Plate[J]. Chin. Phys. Lett., 2010, 27(7): 2922-2925
[12] LIU Yue-Feng, WANG Bei, ZHENG Hai-Wu, LIU Xiang-Yang, GU Yu-Zong, ZHANG Wei-Feng. Temperature-Dependent Raman Spectrum of Hexagonal YMnO3 Films Synthesized by Chemical Solution Method[J]. Chin. Phys. Lett., 2010, 27(5): 2922-2925
[13] YANG Di-Wu, XING Da, ZHAO Xue-Hui, PAN Chang-Ning, FANG Jian-Shu. A Combined Reconstruction Algorithm for Limited-View Multi-Element Photoacoustic Imaging[J]. Chin. Phys. Lett., 2010, 27(5): 2922-2925
[14] ZHANG Hai-Yan, CHEN Xian-Hua, CAO Ya-Ping, YU Jian-Bo . Focusing of Time Reversal Lamb Waves and Its Applications in Structural Health Monitoring[J]. Chin. Phys. Lett., 2010, 27(10): 2922-2925
[15] HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Vibration Characteristics of Acoustically Levitated Object with Rigid and Elastic Reflectors[J]. Chin. Phys. Lett., 2010, 27(1): 2922-2925
Viewed
Full text


Abstract