Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 2743-2746    DOI:
Original Articles |
Chaos Anti-synchronization between Two Novel Different Hyperchaotic Systems
M. Mossa Al-Sawalha, M. S. M. Noorani
School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Cite this article:   
M. Mossa Al-Sawalha, M. S. M. Noorani 2008 Chin. Phys. Lett. 25 2743-2746
Download: PDF(347KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate that anti-synchronization can coexist in two different hyperchaotic systems of ratchets moving in different asymmetric potentials by active control method. By using rigorous mathematical theory, the sufficient condition is drawn for the stability of the error dynamics, where the controllers are designed by using the sum of the relevant variables in hyperchaotic systems. Numerical results are presented to justify the theoretical analysis strategy.
Keywords: 02.30.Yy      05.45.Gg      05.45.Jn     
Received: 29 April 2008      Published: 25 July 2008
PACS:  02.30.Yy (Control theory)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Jn (High-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/02743
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Mossa Al-Sawalha
M. S. M. Noorani
[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821.
[2] Chen G and Dong X 1998 From chaos to order(Singapore: World Scientific) chap 11 p 537
[3] Yassen M T 2003 Appl. Math. Comput. 135 113
[4] Bai E W and Lonngen K E 1997 Chaos, SolitonsFractals 8 51
[5] Wu X and Lu J 2003 Chaos, Solitons Fractals 18721
[6] Zhang H and Ma X K 2004 Chaos, Solitons Fractals 21 39
[7] Codreanu S 2003 Chaos, Solitons Fractals 15507
[8] Ho M C, Hung Y C and Chou C H 2002 Phys. Lett. A 296 43
[9] Zhenya Y and Pei Y 2008 Chaos Solitons Fractals 35 333
[10] Wang G, Zhang X, Zheng Y and Li Y 2006 Physica A 371 260
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 2743-2746
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 2743-2746
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 2743-2746
[4] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 2743-2746
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 2743-2746
[6] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 2743-2746
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 2743-2746
[8] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 2743-2746
[9] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 2743-2746
[10] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 2743-2746
[11] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 2743-2746
[12] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 2743-2746
[13] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 2743-2746
[14] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 2743-2746
[15] TANG Wen-Yan**, QU Zhi-Hua, GUO Yi . Analysis and Control of Two-Layer Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(11): 2743-2746
Viewed
Full text


Abstract