Chin. Phys. Lett.  2008, Vol. 25 Issue (8): 2789-2790    DOI:
Original Articles |
Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant
LIU Liao
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
LIU Liao 2008 Chin. Phys. Lett. 25 2789-2790
Download: PDF(76KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Previously we introduce a new way to quantize the static Schwarzschild black hole (SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr--Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole [Chin. Phys. Lett. (2004) 21 1887]. Here we try to extend the above method to quantize the static de Sitter (SDS) spacetime and establish a quantum theory of both SDS space and the energy density contributed from the cosmological constant.
Keywords: 04.62.+v      04.60.-m     
Received: 02 April 2008      Published: 25 July 2008
PACS:  04.62.+v (Quantum fields in curved spacetime)  
  04.60.-m (Quantum gravity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I8/02789
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Liao
[1]Liu L and Pei S Y 2004 Chin. Phys. Lett. 211887
[2] Gibbons C W and Hawking S W 1977 Phys. Rev. D 15 2738
[3] Landau L D and Lifshitz E M 1976 Mechanics 3rd edn(London: Pergamon)
[4] Huang C G, Liu Liao and Wang B B 2002 Phys. Rev. D 65 083501
[5] Hartle J B and Hawking S W 1983 Phys. Rev. D 28 2960
[6] Coleman S 1977 Phys. Rev. D 15 2929
[7] Liu L and Pei S Y 2006 Acta Phys. Sin. 554980 (in Chinese)
Related articles from Frontiers Journals
[1] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 2789-2790
[2] MU Ben-Rong, WU Hou-Wen**, YANG Hai-Tang . Generalized Uncertainty Principle in the Presence of Extra Dimensions[J]. Chin. Phys. Lett., 2011, 28(9): 2789-2790
[3] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 2789-2790
[4] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 2789-2790
[5] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 2789-2790
[6] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 2789-2790
[7] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 2789-2790
[8] JIANG Ke-Xia, KE San-Min, PENG Dan-Tao, FENG Jun. Hawking radiation as tunneling and the unified first law of thermodynamics at the apparent horizon of the FRW universe[J]. Chin. Phys. Lett., 2009, 26(7): 2789-2790
[9] LI Cheng-Gai, YU Hong-Wei. Radiative Energy Shifts of an Atom Coupled to the Derivative of a Scalar Field near a Reflecting Boundary[J]. Chin. Phys. Lett., 2009, 26(5): 2789-2790
[10] HUANG Tie-Tie, , ZHU Zhi-Ying, ZHU Yun-Feng, YU Hong-Wei,. Spontaneous Emission of an Atom in a Spacetime with Two Parallel Reflecting Boundaries[J]. Chin. Phys. Lett., 2009, 26(4): 2789-2790
[11] HE Feng, ZHAO Fan. Statistical-Mechanical Entropy of a Black Hole with a Global Monopole to All Orders in Planck Length[J]. Chin. Phys. Lett., 2009, 26(4): 2789-2790
[12] CHEN Shi-Wu, YANG Shu-Zheng, HAO Xi-Zhun, LIU Xiong-Wei. A Kind of Exact Inflationary Solution in the Chaotic Inflation Model to Non-minimally Coupled Scalar Field[J]. Chin. Phys. Lett., 2008, 25(9): 2789-2790
[13] FANG Heng-Zhong, ZHU Jian-Yang. Casimir Energy in Hartle--Hawking State[J]. Chin. Phys. Lett., 2008, 25(8): 2789-2790
[14] LIN Kai, YANG Shu-Zheng. An Inflationary Solution of Scalar Field in Finsler Universe[J]. Chin. Phys. Lett., 2008, 25(7): 2789-2790
[15] YE Xing-Hao, LIN Qiang. Inhomogeneous Vacuum: An Alternative Interpretation of Curved Spacetime[J]. Chin. Phys. Lett., 2008, 25(5): 2789-2790
Viewed
Full text


Abstract