Chin. Phys. Lett.  2002, Vol. 19 Issue (9): 1238-1241    DOI:
Original Articles |
Schrödinger Equation for an Open System
BI Qiao1,2,3;H. E. Ruda3
1Complexity Science Center, Yangzhou University, Yangzhou 225002 2Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 3Energenius Centre for Advanced Nanotechnology, University of Toronto, Toronto M5S 3E4, Canada
Cite this article:   
BI Qiao, H. E. Ruda 2002 Chin. Phys. Lett. 19 1238-1241
Download: PDF(249KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a Schrödinger (Liouville) type of equation for a quantum open system. It has a correlated part, and various master equations may be its special cases. It also has significant applications to construct decoherence-free subspace for quantum computation. It is related to the original Schrödinger (Liouville) equation for the total system through a non-unitary similarity transformation. It is unnecessary for its correlated part to be self-adjoint, so there is a complex spectrum for the corresponding Hamiltonian (Liouvillian), which enables the time evolution of states to be asymetric. This shows just the correlation to produce evolution of world.

Keywords: 03.65.-w      05.30.-d      05.20.Dd     
Published: 01 September 2002
PACS:  03.65.-w (Quantum mechanics)  
  05.30.-d (Quantum statistical mechanics)  
  05.20.Dd (Kinetic theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2002/V19/I9/01238
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BI Qiao
H. E. Ruda
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1238-1241
[2] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 1238-1241
[3] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 1238-1241
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1238-1241
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 1238-1241
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1238-1241
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1238-1241
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 1238-1241
[9] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao. Size Segregation in Rapid Flows of Inelastic Particles with Continuous Size Distributions[J]. Chin. Phys. Lett., 2012, 29(1): 1238-1241
[10] LI Rui**, ZHANG Duan-Ming, LI Zhi-Hao . Velocity Distributions in Inelastic Granular Gases with Continuous Size Distributions[J]. Chin. Phys. Lett., 2011, 28(9): 1238-1241
[11] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1238-1241
[12] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 1238-1241
[13] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 1238-1241
[14] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 1238-1241
[15] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 1238-1241
Viewed
Full text


Abstract