Chin. Phys. Lett.  2005, Vol. 22 Issue (5): 1069-1071    DOI:
Original Articles |
Adaptive Control on a Class of Uncertain Chaotic Systems
LIU Guo-Gang;ZHAO Yi
Department of Mathematics, Sun Yat-Sen University, Guangzhou 510275
Cite this article:   
LIU Guo-Gang, ZHAO Yi 2005 Chin. Phys. Lett. 22 1069-1071
Download: PDF(384KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using a simple combination of feedback entrainment control (with an updating feedback strength) and adaptive scheme, for a large class of chaotic systems, it is proven rigorously by using the invariance principle of differential equations that all unknown model parameters can be estimated dynamically and the uncertain system can be controlled to an arbitrary desired smooth orbit. The illustration of the Lorenz system and the corresponding numerical results on the effect of noise are given.
Keywords: 05.45.Gg      05.45.Xt      47.52.+j     
Published: 01 May 2005
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  47.52.+j (Chaos in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2005/V22/I5/01069
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Guo-Gang
ZHAO Yi
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 1069-1071
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 1069-1071
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1069-1071
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1069-1071
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 1069-1071
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1069-1071
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 1069-1071
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1069-1071
[9] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 1069-1071
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 1069-1071
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1069-1071
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 1069-1071
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 1069-1071
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 1069-1071
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 1069-1071
Viewed
Full text


Abstract