Chin. Phys. Lett.  2008, Vol. 25 Issue (10): 3519-3522    DOI:
Original Articles |
R-Matrix of the Coupling AKNS Equation Hierarchy
YU Fa-Jun
College of Mathematics and Systematic Science, Shenyang Normal University, Shenyang 110034
Cite this article:   
YU Fa-Jun 2008 Chin. Phys. Lett. 25 3519-3522
Download: PDF(181KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new r-matrix of the integrable coupling system is obtained by nonlinearization of the coupling eigenvalue problem. As a reduction, we present the r-matrix of the coupling Ablowitz--Kaup--Newell--Segur (AKNS) equation hierarchy via enlarged matrix Lie algebra.
Keywords: 02.30.Ik     
Received: 07 March 2008      Published: 26 September 2008
PACS:  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I10/03519
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Fa-Jun
[1] Ma W X et al 1996 Chaos Solitons Fractals 71227
[2]Ma W X 2000 Methods Appl. Anal. 7 21
[3]Ma W X, Fuchssteiner B 1996 Phys. Lett. A 213 49
[4]Ma W X 2003 Phys. Lett. A 316 72
[5]Ma W X 2005 J. Math. Phys. 46 033507
[6]Guo F G, Zhang Y F 2003 J. Math. Phys. 44 5793
[7]Zhang Y F 2004 Chaos Solitons Fractals 21 305
[8]Ma W X 2002 J. Math. Phys. 43 1408
[9]Ma W X, Strampp W 1994 Phys. Lett. A 185 277
[10]Geng X G 1994 Phys. Lett. A 194 44
[11]Wu Y T and Geng X G 1996 J. Math. Phys. 372338
[12]Geng X G and Dai H H 1999 J. Math. Anal. Appl.233 26
[13]Ma W X et al 1996 Phys A 233 331
[14]Faddeev L D and Takhtajan L A 1987 HamiltonianMethods in the Theory of Soliton (Berlin: Springer)
[15]Ma W X et al 2006 Phys. Lett. A 351 125
[16]Ma W X and Zhou Z X 2001 J. Math. Phys. 424345
[17]Zhang Y F and Zhang H Q 2002 J Math Phys. 43466
[18]Yu F J et al 2006 Chaos, Solitons and Fractals27 1036
[19]Yu F J, Zhang H Q 2006 Commun. Theor. Phys. 415587
[20]Ma W X et al 2006 J. Phys. A: Math. Gen. 3910787
[21]Li Y S et al 2000 Chaos, Solitons and Fractals 11 697
[22]Babelon O and Viallet C M 1990 Phys. Lett. B237 411
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 3519-3522
[2] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 3519-3522
[3] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3519-3522
[4] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 3519-3522
[5] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 3519-3522
[6] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 3519-3522
[7] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3519-3522
[8] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3519-3522
[9] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 3519-3522
[10] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 3519-3522
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 3519-3522
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 3519-3522
[13] WU Hua, ZHANG Da-Jun** . Strong Symmetries of Non-Isospectral Ablowitz–Ladik Equations[J]. Chin. Phys. Lett., 2011, 28(2): 3519-3522
[14] YU Fa-Jun. Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy[J]. Chin. Phys. Lett., 2011, 28(12): 3519-3522
[15] Abbagari Souleymanou, **, Victor K. Kuetche, Thomas B. Bouetou, , Timoleon C. Kofane . Scattering Behavior of Waveguide Channels of a New Coupled Integrable Dispersionless System[J]. Chin. Phys. Lett., 2011, 28(12): 3519-3522
Viewed
Full text


Abstract