Original Articles |
|
|
|
|
Variable Phase Method Used to Calculate Ultracold Scattering Properties of 7Li33Cs |
DU Bing-Ge1, SUN Jin-Feng1,2, ZHANG Ji-Cai1, ZHANG Ying1, LI Wei1, ZHU Zun-Lue1 |
1College of Physics and Information Engineering, Henan Normal University, Xinxiang 4530072Department of Physics, Luoyang Normal College, Luoyang 471022 |
|
Cite this article: |
DU Bing-Ge, SUN Jin-Feng, ZHANG Ji-Cai et al 2008 Chin. Phys. Lett. 25 3639-3642 |
|
|
Abstract Elastic scattering properties of singlet and triplet states of 7Li133Cs at ultralow temperatures are calculated using the constructed potential curves gleaned from high-precision spectroscopy measurement. We show how to reach the scattering length and the number of bound states via the variable phase method. The scattering lengths of the singlet and triplet states of 7Li133Cs are 50.5 a.u. and -135.7 a.u., respectively. We derive two corrections, arising from long range interactions, accurately to at least first order, which provide upper and lower computed bounds to the scattering length. Our results are consistent with the recent experimental data and the theoretical calculation.
|
Keywords:
34.20.Cf
34.50.-s
34.50.Cx
|
|
Received: 13 June 2008
Published: 26 September 2008
|
|
PACS: |
34.20.Cf
|
(Interatomic potentials and forces)
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
34.50.Cx
|
(Elastic; ultracold collisions)
|
|
|
|
|
[1] Anderlini M, Ciampini D, Cossart D, Courtade E, CristianiM, Sias C, Morsch O and Arimondo E 2005 Phys. Rev. A 72033408 [2] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J,Chikkatur A P and Ketterle W 1998 Nature 396 345 [3] Pu H, Bigelow N P 1998 Phys. Rev. Lett. 801130 [4] M{\olmer K 1998 Phys. Rev. Lett. 80 1804 Timmermans E and Cot\'{e R 1998 Phys. Rev. Lett. 80 3419 [5] Heiselberg H, Pethick C J, Smith H and Viverit L 2000 Phys. Rev. Lett. 85 2418 [6] Wang H and Stwalley W C 1998 J. Chem. Phys. 108 5767 [7] Kerman A J, Sage J M, Sainis S, Bergeman T and DeMille D2004 Phys. Rev. Lett. 92 033004 Kerman A J, Sage J M, Sainis S, Bergeman T and DeMille D 2004 Phys. Rev. Lett 92 153001 [8] Lewenstein M, Santos L, Baranov M A and Fehrmann H 2004 Phys. Rev. Lett. 92 050401 [9] Stein A, Pashov A, Staanum P F, Kn\"{ockel H and TiemannE 2008 Eur. Phys. J. D 48 177 [10] Aymar M and Dulieu O 2005 J. Chem. Phys. 122204302 [11] Gonz\'{alez-F\'{erez R, Mayle M and Smelcher P 2006 Chem. Phys. 329 203 [12] Mudrich M, Kraft S, Singer K, Grimm R, Mosk A andWeidem\"{uller M 2002 Phys. Rev. Lett. 88 253001 [13] Mudrich M, Kraft S, Lange J, Mosk A, Weidem\"{uller Mand Tiesinga E 2004 Phys. Rev. A 70 062712 [14] Staanum P, Pashov A, Kn\"{ockel H and Tiemann E 2007 Phys. Rev. A 75 042513 [15] Li Z and Krems R V 2007 Phys. Rev. A 75032709 [16] Mott N F and Massey H S W 1965 The Theory of AtomicCollisions (Oxford: Clarendon) [17] Flambaum V V, Gribakin G F and Harabati C 1999 Phys.Rev. A 59 1998 [18] Gao B 1998 Phys. Rev. A 58 4222 [19] Ouerdane H, Jamieson M J, Vrinceanu D and Cavagnero M J2003 J. Phys. B 36 4055 [20] Calogero F 1967 Variable Phase Method Approach toPotential Scattering (New York: Academic) [21] Ouerdane H and Jamieson M J 2004 Phys. Rev. A 70 022712 [22] Friedman R S and Jamieson M J 1995 Comput. Phys.Commun. 85 231 [23] Ouerdane H and Jamieson M J arxiv:0802.1222vl [24] Smirnov B M and Chibisov M I 1965 Sov. Phys. JETP 21 624 [25] Zanelatto A L M, Ribeiro E M S and Napolitano R D J 2005 J. Chem. Phys. 123 014311 [26] Azizi S, Aymar M and Dulieu O 2004 Eur. Phys. J. D 31 195 [27] Clenshaw C W 1961 Modern Computing Methods (London:Her Majesty's Stationery Office) [28] Orlikowski T, Staszewska G and Wolniewicz L 1999 Mol. Phys. 96 1445 [29] Jamieson M J, Sarbazi-Azad H, Ouerdane H, Jeung G H, LeeY S and Lee W C 2003 J. Phys. B 36 1085 [30] Cavagnero M G 1994 Phys. Rev. A 50 2841 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|