Chin. Phys. Lett.  2008, Vol. 25 Issue (11): 4009-4012    DOI:
Original Articles |
Passively Q-Switched Quasi-Continuous-Wave Diode-Pumped Intracavity Optical Parametric Oscillator at 1.57
WANG Yu-Ye1,2, XU De-Gang1,2, WEN Wu-Qi1,2, WANG Peng1,2, YAO Jian-Quan 1,2
1Institute of Laser and Optoelectronics, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 3000722Key Laboratory of Optoelectric Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072
Cite this article:   
WANG Yu-Ye, XU De-Gang, WEN Wu-Qi et al  2008 Chin. Phys. Lett. 25 4009-4012
Download: PDF(664KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report on a passively Q-switched quasi-cw diode-pumped Nd:YAG including an intracavity optical parametric oscillator. The dynamics of this system is described by solving the coupled equations. The effect of the initial transmission of Cr4+:YAG saturable absorber on the signal wave operation is studied. Under optimum conditions, we achieve 2.3mJ energy at 1.57μm wavelength for 40Hz repetition rate. The peak power of the pulses amounts to 0.88MW with the pulse width of 2.6ns. When the Fresnel reflection losses of the filters are taken into account, the pulse energy would be higher than 2.3mJ. To the best of our knowledge, this is the highest pulse energy and peak power for such a type of single resonant quasi-cw diode pumped Nd:YAG/Cr4+:YAG IOPO laser.

Keywords: 42.65.Yj      42.55.Xi      42.60.Gd      02.60.Cb      42.70.Mp     
Received: 14 June 2008      Published: 25 October 2008
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.55.Xi (Diode-pumped lasers)  
  42.60.Gd (Q-switching)  
  02.60.Cb (Numerical simulation; solution of equations)  
  42.70.Mp (Nonlinear optical crystals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I11/04009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yu-Ye
XU De-Gang
WEN Wu-Qi
WANG Peng
YAO Jian-Quan
[1] Oshman M K and Harris S E 1968 IEEE J. Quantum
Electron. 4 491
[2] Amman E O et al 1970 Appl. Phys. Lett. 16 309
[3] Conroy R S et al 1998 Opt. Lett. 23 1348
[4] Dabu R et al 2001 Opt. Eng. 40 455
[5] Raevsky E V et al 2002 Proc. SPIE 4630 75
[6] Wan Y et al 2005 Chin. Phys. 14 714
[7] Liu Q et al Chin. J. Lasers 2003 30 113
[8] Zendzian W et al 2005 Appl. Phys. B 80 329
[9] Chen Y F et al 2003 Appl. Phys. B 77 493
[10] Chen Y F et al 2004 Opt. Commun. 234 337
[11] Chen Y F et al 2004 Appl. Phys. B 79 823
[12] Miao J et al 2007 Appl. Phys. B 88 193
[13] Liu X et al 2007 Chin. J. Lasers 34 485
[14] Yashkir Y and Driel H M van 1999 Appl. Opt.
38 2554
[15] Agnesi A et al 2000 Appl. Phys. B 70 751
[16] Zendzian W et al 2003 Appl. Phys. B 76 355
[17] Debuisschert T et al 1996 J. Opt. Soc. Am. B
13 1569
[18] Wang Y Y et al 2008 Chin. Opt. Lett. 6 207
Related articles from Frontiers Journals
[1] ZHANG Feng-Feng, YANG Feng, ZHANG Shen-Jin, WANG Zhi-Min, XU Feng-Liang, PENG Qin-Jun, ZHANG Jing-Yuan, WANG Xiao-Yang, CHEN Chuang-Tian, XU Zu-Yan. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(6): 4009-4012
[2] WANG Li-Rong, WANG Gui-Ling, ZHANG Xin, LIU Li-Juan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian. Generation of Ultraviolet Radiation at 266 nm with RbBe2BO3F2 Crystal[J]. Chin. Phys. Lett., 2012, 29(6): 4009-4012
[3] ZHOU Zhi-Chao, TIAN Xue-Ping, DAI Qi-Biao, HAN Wen-Juan, HUANG Jia-Yin, LIU Jun-Hai, ZHANG Huai-Jin. The Laser Action of a Yb:CLNGG Crystal with an Efficiency Approaching Its Quantum Defect Imposed Limit[J]. Chin. Phys. Lett., 2012, 29(6): 4009-4012
[4] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 4009-4012
[5] YANG Jing,DU Shi-Feng,ZHANG Jing-Yuan,*,CAO Dong,CUI Da-Fu,PENG Qin-Jun,XU Zu-Yan*. Tomographic Imaging and Three-Dimensional Reconstruction Based on a High-Gain Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 4009-4012
[6] JIANG Man,ZHANG Qiu-Lin,ZHOU Wen-Jia,ZHANG Jing,ZHANG Dong-Xiang,FENG Bao-Hua**. Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser under Direct 885 nm Diode Laser Pumping[J]. Chin. Phys. Lett., 2012, 29(5): 4009-4012
[7] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 4009-4012
[8] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 4009-4012
[9] CAO Dong,DU Shi-Feng**,PENG Qin-Jun,BO Yong,XU Jia-Lin,GUO Ya-Ding,ZHANG Jing-Yuan,CUI Da-Fu,XU Zu-Yan. A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate[J]. Chin. Phys. Lett., 2012, 29(4): 4009-4012
[10] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 4009-4012
[11] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 4009-4012
[12] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 4009-4012
[13] YAO Bao-Quan, DUAN Xiao-Ming, YU Zheng-Ping, WANG Yue-Zhu. Actively Q−Switched Laser Performance of Holmium-Doped Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 4009-4012
[14] YAN Ying, FAN Zhong-Wei, NIU Gang, YU Jin, ZHANG Heng-Li. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds[J]. Chin. Phys. Lett., 2012, 29(3): 4009-4012
[15] ZHENG Yi-Bo, YAO Jian-Quan, ZHANG Lei, WANG Yuan, WEN Wu-Qi, JING Lei, DI Zhi-Gang. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers[J]. Chin. Phys. Lett., 2012, 29(2): 4009-4012
Viewed
Full text


Abstract