Chin. Phys. Lett.  2009, Vol. 26 Issue (1): 014102    DOI: 10.1088/0256-307X/26/1/014102
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Simulation of Electromagnetic Wave Logging Response in Deviated Wells Based on Vector Finite Element Method
LV Wei-Guo1, CHU Zhao-Tan1, ZHAO Xiao-Qing2,3, FAN Yu-Xiu3, SONG Ruo-Long1, HAN Wei1
1College of Physics, Jilin University, Changchun 1300232College of Geoexploration Science and Technology, Jilin University, Changchun 1300263Daqing Drilling and Exploration Engineering Corporation No 1 Well Logging Company, Daqing 163412
Cite this article:   
LV Wei-Guo, CHU Zhao-Tan, ZHAO Xiao-Qing et al  2009 Chin. Phys. Lett. 26 014102
Download: PDF(384KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The vector finite element method of tetrahedral elements is used to model 3D electromagnetic wave logging response. The tangential component of the vector field at the mesh edges is used as a degree of freedom to overcome the shortcomings of node-based finite element methods. The algorithm can simulate inhomogeneous media with arbitrary distribution of conductivity and magnetic permeability. The electromagnetic response of well logging tools are studied in dipping bed layers with the borehole and invasion included. In order to simulate realistic logging tools, we take the transmitter antennas consisting of circular wire loops instead of magnetic dipoles. We also investigate the apparent resistivity of inhomogeneous formation for different dip angles
Keywords: 41.20.-q      02.60.Cb      02.70.Dh     
Received: 04 September 2008      Published: 24 December 2008
PACS:  41.20.-q (Applied classical electromagnetism)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Dh (Finite-element and Galerkin methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/1/014102       OR      https://cpl.iphy.ac.cn/Y2009/V26/I1/014102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Wei-Guo
CHU Zhao-Tan
ZHAO Xiao-Qing
FAN Yu-Xiu
SONG Ruo-Long
HAN Wei
[1] Howard A Q, Jr and Chew W C 1992 Geophysics 57451
[2] Li J and Liu C 2000 IEEE Trans. Geosci. Remote Sens. 38 1522
[3] Fan G. X, Liu Q H and Blanchard S P 2000 IEEE Trans.Antennas Propag. 48 1544
[4] Liu S and Sato M 2002 IEEE Trans. Geosci. RemoteSens. 40 2083
[5] Zhang Z Q and Liu Q H 2003 IEEE Trans. Geosci. RemoteSens. 41 998
[6] Gao G., Torres V C and Fang S 2004 Petrophysics 45 335
[7] Hue Y K, Teixeira F L, Martin L E S and Bittar M 2005 IEEE Geosci. Remote Sens. Lett. 2 78
[8] Hue Y K, Teixeira F L, Martin L E S and Bittar M 2005 IEEE Trans. Geosci. Remote Sens. 43 257
[9] Pardo D, Torres V C and Demkowicz L F 2006 IEEETrans. Geosci. Remote Sens. 44 2125
[10] J. M. Jin 2002 The Finite Element Method inElectromagnetics (New York: Wiley) p 164
[11] Sadiku M N O 2001 Numerical Techniques inEletromagnetics 2$^{nd$ edn (New York: CRC Press) p 390
[12] Webb J P 1993 IEEE Trans. Magn. 29 1460
[13] Liu A and Joe B 1996 Math. Comput. 65 1183
[14] Hue Y K, Teixeira F L, San M L E and Bittar M 2005 IEEE Trans. Geosci. Remote Sens. Lett. 2 78
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 014102
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[4] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[5] PAN Wei-Tao, LIU Song-Hua, QIU Zhi-Liang. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media[J]. Chin. Phys. Lett., 2012, 29(3): 014102
[6] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 014102
[7] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 014102
[8] SUN Qi-Zhi, FANG Dong-Fan**, LIU Wei, LIU Zheng-Fen, CHI Yuan, DAI Wen-Feng, HAN Wen-Hui . Experiments on Broadband EMP Radiation with an Axial Mode Helix Antenna[J]. Chin. Phys. Lett., 2011, 28(9): 014102
[9] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 014102
[10] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 014102
[11] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 014102
[12] WANG Rui**, GUO Li-Xin, WANG An-Qi, WU Zhen-Sen . Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film[J]. Chin. Phys. Lett., 2011, 28(3): 014102
[13] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 014102
[14] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 014102
[15] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 014102
Viewed
Full text


Abstract