FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Nonlinear Photoluminescence from ZnO Nanobelts |
ZHOU Zhang-Kai1, HAO Zhong-Hua1, MEI Zong-Wei2, WEN Xiao-Gang2, YANG Shi-He3 |
1Department of Physics and Key Laboratory of Acoustic and Photonic Materials and Devices (Ministry of Education), Wuhan University, Wuhan 4300722School of Material Science and Engineering, Sichuan University, Chengdu 6100653Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong |
|
Cite this article: |
ZHOU Zhang-Kai, HAO Zhong-Hua, MEI Zong-Wei et al 2009 Chin. Phys. Lett. 26 024201 |
|
|
Abstract The nonlinear photoluminescence (PL) including second-harmonic generation (SHG) and the multiphoton luminescence (MPL) around 385nm and 530nm from ZnO nanobelts are investigated by using near-infrared excitations. The excitation wavelength dependence of MPL intensity reveals resonant energy transfer from SHG to MPL near the band gap excitation. The lifetime measurement of the MPL shows a much slower decay process of the defect emission, which results from the generation and recombination of both donors and acceptors on the disordered surface of the ZnO nanobelts.
|
Keywords:
42.65.Ky
42.65.Re
78.47.Jc
78.55.Et
|
|
Received: 04 June 2008
Published: 20 January 2009
|
|
PACS: |
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
78.47.Jc
|
|
|
78.55.Et
|
(II-VI semiconductors)
|
|
|
|
|
[1] Huang M H et al 2001 Science 292 1897 [2] Nomura K et al 2003 Science 300 1269 [3] Service R F 1997 Science 276 895 [4] Wang Z L 2007 Appl. Phys. A: Mater. Sci. Proc. 88 7 [5] Zou B S et al 2006 J. Phys. Chem. B 110 12865 [6] Tang G Q et al 2004 Chem. Phys. Lett. 395 97 [7] Jung S W et al 2002 Appl. Phys. Lett. 80 1924 [8] Prasanth R et al 2006 Appl. Phys. Lett. 88181501 [9] Cao H et al 1998 Appl. Phys. Lett. 73 572 [10] Griebner U et al 1998 Appl. Phys. B 67 757 [11] Wang G, Wong G K L and Ketterson J B 2001 Appl.Opt. 40 5436 [12] Wang G et al 2002 Appl. Phys. Lett. 80 401 [13] Johnson J C et al 2002 Nano. Lett. 2 279 [14] Petrov G I et al 2003 Appl. Phys. Lett. 833993 [15] Neumann U et al 2004 Appl. Phys. Lett. 84 170 [16] Scheidt T et al 2004 Eur. Phys. J. Appl. Phys. 27 393 [17] Xiao S et al 2008 Chin. Phys. B 17 1291 [18] Han Y B et al 2005 Opt. Exp. 13 9211 [19] Chu S S et al 2007 Chin. Phys. Lett 24 727 [20] Ma Jin et al 1999 Thin Solid Films 357 98 [21] Li G R et al 2008 J. Phys. Chem. C 112 2927 [22] Dai D C et al 2005 Opt. Lett. 30 3377 [23] Lin J H et al 2005 J. Appl. Phys. 97 33526 [24] Dai D. C et al 2006 IEEE Photon. Tech. Lett. 18 1533 [25] Yu L et al 2008 Chem. Phys. Lett. 465 272 [26] Liu D F et al 2008 Langmuir 24 5052 [27] Pan Z W , Dai Z R and Wang Z L 2001 Science 291 1947 [28] Wang Z L 2004 J. Phys.: Condens. Matter. 16R829 [29] Zhang X Y et al 2004 Chem. Phys. Lett. 393 17 [30] Comini E et al 2002 Appl. Phys. Lett. 811869 [31] Wang X D et al 2004 J. Phys. Chem. B 108 8773 [32] Kong X Y et al 2004 Science 303 1348 [33] Arnold M et al 2003 J. Phys. Chem. B 107 659 [34] Bai X D et al 2003 Appl. Phys. Lett. 82 4806 [35] Hughes W L and Wang Z L 2003 Appl. Phys. Lett. 82 2886 [36] Sadek A Z et al 2007 IEEE Sensors J. 7 919 [37] Wen X G. et al 2005 J. Phys. Chem. B 10915303 [38] Koida T et al 2004 Phys. Status Solidi A 2012841 [39] Yamamoto S et al 2007 J. Lumin. 126 257 [40] Van Dijken A et al 2000 J. Lumin. 90 123 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|