Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 024702    DOI: 10.1088/0256-307X/26/2/024702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System
YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi
State key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871
Cite this article:   
YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min et al  2009 Chin. Phys. Lett. 26 024702
Download: PDF(648KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We systematically investigate the behaviour of pattern formation in a reaction-diffusion system when the system is located near the Turing-Hopf codimension-2 point in phase space. The chloride-iodide-malonic acid (CIMA) reaction is used in this study. A phase diagram is obtained using the concentration of polyvinyl alcohol (PVA) and malonic acid (MA) as control parameters. It is found that the Turing-Hopf mixed state appears only in a small vicinity near the codimension-2 point, and has the form of hexagonal pattern overlapped with anti-target wave; the boundary line separating the Turing state and the wave state is independent of the concentration of MA, only relies on the concentration of PVA. The corresponding numerical simulation using the Lengyel-Epstein (LE) model gives a similar phase diagram as the experiment; it reproduces most patterns observed in the experiment. However, the mixed state we obtain in simulation only appears in the anti-wave tip area, implying that the 3-D effect in the experiments may change the pattern forming behaviour in the codimension-2 regime.
Keywords: 47.54.-r      47.20.Ky      82.40.Bj     
Received: 06 October 2008      Published: 20 January 2009
PACS:  47.54.-r (Pattern selection; pattern formation)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/024702       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/024702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Xu-Jin
SHAO Xin
LIAO Hui-Min
OUYANG Qi

[3] Turing A M 1952 Philos. Trans. Soc. London B 327 37
[4] Ouyang Q and Swinney H L, 1991 Nature 352 610
[5] Castets V et al 1990 Phys. Rev. Lett. 64,2953
[6] Rudovics B et al 1996 Physica Scripta 67 43
[7] Shao X, Ren Y and Ouyang Q 2006 Chin. Phys. 15513
[8] Rovinsky A and Menzinger M 1992 Phy. Rev. A 466315
[9] Miguez D G et al 2006 Phy. Rev. Lett. 97178301
[10] Shao X et al 2008 Phy. Rev. Lett. 100 198304
[11] Kepper P D et al 1994 Int. J. Bifur. Chaos 4 1215
[12] Ouyang Q and Swinney H L 1991 Chaos 411 1
[13] Gong Y F et al 2003 Phys. Rev. Lett. 90088302
[14] Wang C et al 2006 Phys. Rev. E 74 036208
[15] Nicola E M et al 2004 J. Phys. Chem. B 10814733
[16] Wang H L and Ouyang Q 2004 Chin. Phys. Lett. 21 1437
[17] Lengyel I et al 1992 Phys. Rev. Lett. 69 2729
[18] Lengyel I et al 1992 Proc. Natl. Acad. Sci. 89 3977
Related articles from Frontiers Journals
[1] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 024702
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 024702
[3] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 024702
[4] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 024702
[5] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 024702
[6] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 024702
[7] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 024702
[8] CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye, WANG Wei-Chi. Cytoplasmic Ca2+ Dynamics under the Interplay between the Different IP3R Gating Models and the Plasma Membrane Ca2+ Influx[J]. Chin. Phys. Lett., 2010, 27(1): 024702
[9] MENG Pan, LU Qi-Shao. Dynamical Effect of Calcium Pump on Cytosolic Calcium Bursting Oscillations with IP3 Degradation[J]. Chin. Phys. Lett., 2010, 27(1): 024702
[10] CHEN Xi, GAO Yong, YANG Yuan. A Novel Method for the Initial-Condition Estimation of a Tent Map[J]. Chin. Phys. Lett., 2009, 26(7): 024702
[11] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 024702
[12] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 024702
[13] ZHANG Hua-Yan, RAN Zheng. Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons[J]. Chin. Phys. Lett., 2009, 26(3): 024702
[14] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 024702
[15] ZHANG Qi-Chang, WANG Wei, LI Wei-Yi. Heteroclinic Bifurcation of Strongly Nonlinear Oscillator[J]. Chin. Phys. Lett., 2008, 25(5): 024702
Viewed
Full text


Abstract