CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Finite Element Analysis of Convection in Growth Cell for Diamond Growth Using Ni-Based Solvent |
TIAN Yu1, JIA Xiao-Peng1, ZANG Chuan-Yi2, LI Rui3, LI Shang-Sheng1, XIAO Hong-Yu1, ZHANG Ya-Fei1, HUANG Guo-Feng1, HAN Qi-Gang1, MA Li-Qiu1, LI Yong1, CHEN Xiao-Zhou2, ZHANG Cong1, MA Hong-An |
1State Key Lab of Superhard Materials, Jilin University, Changchun 1300122Henan Polytechnic University, Jiaozuo 4540003Changchun University of Science and Technology, Changchun 130012 |
|
Cite this article: |
TIAN Yu, JIA Xiao-Peng, ZANG Chuan-Yi et al 2009 Chin. Phys. Lett. 26 028104 |
|
|
Abstract Thermal-electrical-fluid coupled finite element analyses are performed in the model of the growth cell in a high-pressure and high-temperature (HPHT) cubic apparatus in which the large diamond crystal can be grown by using Ni-based solvent with temperature gradient method (TGM). The convection in the Ni-based solvent with different thicknesses at 1700-1800K is simulated by finite element method (FEM). The experiments of diamond crystal growth are also carried out by using Ni-based solvent at 5.7GPa and 1700-1800K in a China-type cubic high pressure apparatus (CHPA). The simulation results show that the Rayleigh number in the solvent is enhanced obviously with the increasing solvent thickness. Good quality diamond single crystal cannot be grown if the Rayleigh number in the solvent is too high.
|
Keywords:
81.05.Uw
81.10.Aj
81.10.Dn
81.10.-h
|
|
Received: 24 September 2008
Published: 20 January 2009
|
|
PACS: |
81.05.Uw
|
|
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
81.10.Dn
|
(Growth from solutions)
|
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
|
|
|
[1] Wentorf R H 1971 J. Phys. Chem. 76 1833 [2] Strong H M et al 1971 J. Phys. Chem. 76 1838 [3] Liu Q Q et al 2008 Chin. Phys. Lett. 25 2239 [4] Chen J Y et al 2008 Chin. Phys. Lett. 25 780 [5] Burns R C et al 1999 Diamond Relat. Mater. 81433 [6] Sumiya H et al 2002 Diamond Relat. Mater. 237-239 1281 [7] Wang X C et al 2005 Chin. Phys. Lett. 22 1800 [8] Zang C Y et al 2005 Chin. Phys. Lett. 22 2415 [9] Tian Y et al 2007 Chin. Phys. Lett. 24 2115 [10] Xiao H Y et al 2008 Chin. Phys. Lett. 25 1469 [11] Li S S et al 2008 Chin. Phys. Lett. 25 3801 [12] 2005 Crystals: Growth, Morphology and Perfection edSunagawa I (London: Cambridge University Press) p 31 [13] Ma W J et al 2008 Chin. Phys. Lett. 25 1351 [14] Li L J et al 2008 Chin. Phys. Lett. 25 1734 [15] Strong H M 1964 Acta Met. 12 1411 [16] Strong H M and Hanneman R E 1967 J. Chem. Phys. 46 3668 [17] Sato Y et al 2005 Measurement Science andTechnology 16 363 [18] 1986 Handbook of Applied Thermal PhysicalProperties ed Ma Q F (Beijing: Farm Machinery) pp 50--900 [19] Ma H A, Jia X P et al 2002 J. Phys.: Condens.Matter. 14 11269 [20] Rosenberger F and G. Muller 1983 J. Crystal Growth 65 91 [21] Sun L et al 2008 Chin. Phys. Lett. 25 2121 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|