Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 074501    DOI: 10.1088/0256-307X/26/7/074501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Jourdain Principle of a Super-Thin Elastic Rod Dynamics
XUE Yun, SHANG Hui-Lin
School of Mechanical and Automation Engineering, Shanghai Institute of Technology, Shanghai 200235
Cite this article:   
XUE Yun, SHANG Hui-Lin 2009 Chin. Phys. Lett. 26 074501
Download: PDF(194KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A super thin elastic rod is modeled with a background of DNA super coiling structure, and its dynamics is discussed based on the Jourdain variation. The cross section of the rod is taken as the object of this study and two velocity spaces about arc coordinate and the time are obtained respectively. Virtual displacements of the section on the two velocity spaces are defined and can be expressed in terms of Jourdain variation. Jourdain principles of a super thin elastic rod dynamics on arc coordinate and the time velocity space are established, respectively, which show that there are two ways to realize the constraint conditions. If the constitutive relation of the rod is linear, the Jourdain principle takes the Euler-Lagrange form with generalized oordinates. The Kirchhoff equation, Lagrange equation and Appell equation can be derived from the present Jourdain principle. While the rod subjected to a surface constraint, Lagrange equation with undetermined multipliers may be derived.
Keywords: 45.20.Jj      45.90.+t      46.70.Hg     
Received: 19 January 2009      Published: 02 July 2009
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  45.90.+t  
  46.70.Hg (Membranes, rods, and strings)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/074501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/074501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XUE Yun
SHANG Hui-Lin
[1] Westcott T P, Tobias I and Olson WK 1997 J. Chem.Phys. 107 3967
[2] Travers A A and Thompson J M T 2004 PhilosophicalTransactions: Mathematical, Physical and Engineering Sciences 362 1265
[3] Bernard D C and David S 2004 PhilosophicalTransactions: Mathematical, Physical and Engineering Sciences 362 1281
[4] Westcott T P, Tobias I, Olson W K 1995 J. Phys.Chem. 99 17926
[5] Liu Y Z 2006 Nonlinear Mechanics of Thin ElasticRod-Theoretical Basis of Mechanical Model of DNA (Beijing: TsinhuaUniversity Press {\& Springer) (in Chinese)
[6] Liu Y Z 2003 Mech. Engin. 25 1 (in Chinese)
[7] Liu Y Z, Xue Y and Chen L Q 2004 Acta Phys. Sin. 53 2424 (in Chinese)
[8] Xue Y, Liu Y Z and Chen L Q 2004 Chin. Phys. 13 794
[9] Xue Y, Chen L Q and Liu Y Z 2004 Acta Phys. Sin. 53 2040 (in Chinese)
[10] Xue Y, Chen L Q and Liu Y Z 2004 Acta Phys. Sin. 53 4029 (in Chinese)
[11] Zhao W J, Weng Y Q and Fu J L 2007 Chin. Phys.Lett. 24 2773
[12] Love A E H 1927 A Treatise on Mathematical Theory ofElasticity 4th edn (New York: Dover)
[13] Liu Y Z and Xue Y 2004 Technische Mechanik 24206
[14] Langer J and Singer D A 1996 SIAM Rev. 38 605
[15] Pozo C L M 2000 Physica D 141 248
[16] Xue Y, Liu Y Z and Chen L Q 2005 Acta Mech. Sin. 37 485 (in Chinese)
[17] Xue Y and Liu Y Z 2006 Chinese Quarterly ofMechanics 27 550 (in Chinese)
[18] Xue Y and Liu Y Z 2006 Acta Phys. Sin. 553845 (in Chinese)
[19] Xue Y and Weng D W 2009 Acta Phys. Sin. 58 34(in Chinese)
[20] Mei F X, Xie J F and Gang T Q 2007 Chin. Phys. Lett. 24(5): 1133
[21] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin.Phys. Lett. 26 030303
[22] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys.Lett. 25 809
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 074501
[2] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 074501
[3] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 074501
[4] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 074501
[5] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 074501
[6] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 074501
[7] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 074501
[8] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 074501
[9] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 074501
[10] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 074501
[11] XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu, JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 074501
[12] PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai. Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 074501
[13] WANG Peng, FANG Jian-Hui, WANG Xian-Ming. Discussion on Perturbation to Weak Noether Symmetry and Adiabatic Invariants for Lagrange Systems[J]. Chin. Phys. Lett., 2009, 26(3): 074501
[14] JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 074501
[15] ZHANG Ming-Jiang, FANG Jian-Hui, LU Kai, ZHANG Ke-Jun. Perturbation to Noether Symmetry and Noether Adiabatic Invariants of General Discrete Holonomic Systems[J]. Chin. Phys. Lett., 2009, 26(12): 074501
Viewed
Full text


Abstract