CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Efficient White Light Emission Using a Single Copolymer with Red and Green Chromophores on a Conjugated Polyfluorene Backbone Hybridized with InGaN-Based Light-Emitting Diodes |
ZHANG Yong1, HOU Qiong2, NIU Qiao-Li1, ZHENG Shu-Wen1, LI Shu-Ti1, HE Miao1, FAN Guang-Han1 |
1Institute of Optoelectronic Materials and Technology, South China Normal University, Guangzhou 5106312School of Chemistry and Environment, South China Normal University, Guangzhou 510631 |
|
Cite this article: |
ZHANG Yong, HOU Qiong, NIU Qiao-Li et al 2009 Chin. Phys. Lett. 26 077811 |
|
|
Abstract We report an efficient white-light emission based on a single copolymer/InGaN hybrid light-emitting diode. The single copolymer consists of a conjugated polyfluorene backbone by incorporating 2,1,3-benzothiadiazole (BT) and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (DBT) as green and red light-emitting units, respectively. For the single copolymer/InGaN hybrid device, the Commission Internationale de l'Eclairage (CIE) coordinates, color temperature Tc and color rendering index Ra at 20mA are (0.323,0.329), 5960K and 86, respectively. In comparison with the performance of red copolymer PFO-DBT15 (DOF:DBT=85:15 with DOF being 9'9-dioctylfluorene) and green copolymer PFO-BT35 (DOF:BT=65:35) blend/InGaN hybrid white devices, it is concluded that the chemically doped copolymer hybridized device shows a higher emission intensity and spectral stability at a high driving current than the polymer blend.
|
Keywords:
78.60.Fi
78.66.Qn
85.60.Jb
|
|
Received: 16 January 2009
Published: 02 July 2009
|
|
|
|
|
|
[1] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys.Lett. 64 1687 [2] Ambacher O 1998 J. Phys. D: Appl. Phys. l312653 [3] Nakamura S and Fasol G 1996 The Blue Laser Diode: GaNBased Light Emitters and Lasers (Berlin: Springer) p 216 [4] Park J K, Choi K J, Kim K N and Kim C H 2005 Appl.Phys. Lett. 87 031108 [5] Xie R J, Hirosaki N, Mitomo M, Sakuma K and Kiumra N 2006 Appl. Phys. Lett. 89 241103 [6] Yamada M, Naitou T, Izuno K, Tamaki H, Murazaki Y,Kameshima M and Mukai T 2003 Jpn. J. Appl. Phys. I$\!$I 42 L20 [7] Sheu J K, Chang S J, Kuo C H, Su Y K, Wu L W, Lin Y C, LaiW C, Tsai J M, Chi G C and Wu R K 2003 IEEE Photon. Technol.Lett. 15 18 [8] Park J K, Choi K J, Yeon J H, Lee S J and Kim C H 2006 Appl. Phys. Lett. 88 043511 [9] Sato Y, Takahashi N and Sato S 1996 Jpn. J. Appl.Phys. Part 2 35 L838 [10] Huh Y D, Shim J H, Kim Y, Do Y R 2003 J.Electrochem. Soc. 150 H57 [11] Hide F, Kozodoy P, DenBaars S P and Heeger A J 1997 Appl. Phys. Lett. 70 2664 [12] Heliotis G, Stavrinou P N, Bradley D D C, Gu E, GriffinC, Jeon C W and Dawson M D 2005 Appl. Phys. Lett. 87103505 [13] Heliotis G, Gu E, Griffin C, Jeon C W, Stavrinou P N,Dawson M D and Bradley D D C 2006 J. Opt. A: Pure Appl. Opt. 8 S445 [14] Belton C R, Itskos G, Heliotis G, et al 2008 J.Phys. D: Appl. Phys. 41 094006 [15] Butun B, Aydin K, Ulker E, Cheylan S, Badenes G, ForsterM, Scherf U, and Ozbay E 2008 Nanotechnology 19 195202 [16] Guha S, Haight R A, Bojarczuk N A and Kisker D W 1997 J. Appl. Phys. 82 4126 [17] Ermakov O N, Kaplunov M G, Efimov O N, Yakushchenko I K,Belov M Y and Budyka M F 2003 Microelectron. Eng. 69 208 [18] Xiang H F, Yu S C, Che C M and Lai P T 2003 Appl.Phys. Lett. 83 1518 [19] Lee S K, Hwang D H, Jung B J, Cho N S, Lee J, Lee J D andShim H K 2005 Adv. Funct. Mater. 15 1647 [20] Liu J, Zhou Q G, Cheng Y X, Geng Y H, Wang L X, Ma D G,Jing X B and Wang F S 2005 Adv. Mater. 17 2974 [21] Jiang J X, Xu Y H, Yang W, Guan R, Liu Z Q, Zhen H Y andCao Y 2006 Adv. Mater. 18 1769 [22] Luo J, Li X Z, Hou Q, Peng J B, Yang W and Cao Y 2007 Adv. Mater. 19 1113 [23] Bernius M T, Inbasekaran M, O'Brien J and Wu W S 2000 Adv. Mater. 12 1737 [24] Cao X A, Stokes E B, Sandvik P, Taskar N, Kretchmer J andWlker D 2002 Solid-State Electron. 46 1235 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|