Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 083701    DOI: 10.1088/0256-307X/26/8/083701
ATOMIC AND MOLECULAR PHYSICS |
Bose-Einstein Condensates in a One-Dimensional Optical Lattice: from Superfluidity to Number-Squeezed States
WANG Xiao-Rui1,2, YANG Lu1,2, TAN Xin-Zhou1,2, XIONG Hong-Wei1, LÜ Bao-Long1
1State key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 4300712Graduate School, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
WANG Xiao-Rui, YANG Lu, TAN Xin-Zhou et al  2009 Chin. Phys. Lett. 26 083701
Download: PDF(1002KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the phase coherence property of Bose-Einstein condensates confined in a one-dimensional optical lattice formed by a standing-wave laser field. The lattice depth is determined using a method of Kapitza-Dirac scattering between a condensate and a short pulse lattice potential. Condensates are then adiabatically loaded into the optical lattice. The phase coherence property of the confined condensates is reflected by the interference patterns of the expanded atomic cloud released from the optical lattice. For weak lattice, nearly all of the atoms stay in a superfluid state. However, as the lattice depth is increased, the phase coherence of the whole condensate sample is gradually lost, which confirms that the sub-condensates in each lattice well have evolved into number-squeezed states.
Keywords: 37.10.Jk      03.75.Gg      03.75.Nt     
Received: 12 February 2009      Published: 30 July 2009
PACS:  37.10.Jk (Atoms in optical lattices)  
  03.75.Gg (Entanglement and decoherence in Bose-Einstein condensates)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/083701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/083701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Rui
YANG Lu
TAN Xin-Zhou
XIONG Hong-Wei
Bao-Long
[1] Anderson B P and Kasevich M A 1998 Science 2821686
[2] Morsch O, M\"{uller J H, Cristiani M, Ciampini D andArimondo E 2001 Phys. Rev. Lett. 87 140402
[3] Cristiani M, Morsch O, M\"{uller J H, Ciampini D andArimondo E 2002 Phys. Rev. A 65 063612
[4] Stamper-Kurn D M, Chikkatur A P, G\"{orlitz A, Inouye S,Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
[5] Steinhauer J, Ozeri K, Katz N and Davidson N 2002 Phys. Rev. Lett. 88 120407
[6] Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F,Trombettoni A, Smerzi A and Inguscio M 2001 Science 293843
[7] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and KasevichM A 2001 Science 291 5512
[8] Greiner M, Mandel O, H\"{ansch T W and Bloch I 2002 Nature 415 39
[9] Greiner M, Mandel O, H\"{ansch T W and Bloch I 2002 Nature 419 51
[10] Kapitza P L and Dirac P A M 1933 Proc. Cam. Philos.Soc. 29 297
[11] Morsch O and Oberthaler M 2006 Rev. Mod. Phys 78 179
[12] Ovchinnikov Y B, M\"{uller J H, Doery M R, Vredenbregt EJ D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev.Lett. 83 284
[13] Denschlag J H, Simsarian J E, McKenzie C and Phillips W D2002 J. Phys. B: At. Mol. Opt. Phys. 35 3095
[14] Sapiro R E, Zhang R and Raithel G 2009 New J. Phys. 11 013013
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 083701
[2] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 083701
[3] LIU Yuan,JIA Ya-Fei,LI Wei-Dong**. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential[J]. Chin. Phys. Lett., 2012, 29(4): 083701
[4] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 083701
[5] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 083701
[6] MENG Qing-Kuan**, ZHU Jian-Yang . Constrained Traffic of Particles on Complex Networks[J]. Chin. Phys. Lett., 2011, 28(7): 083701
[7] YU Geng-Hua, , ZHONG Jia-Qi, , LI Run-Bing, WANG Jin, ZHAN Ming-Sheng, ** . Magic Wavelength of an Optical Clock Transition of Barium[J]. Chin. Phys. Lett., 2011, 28(7): 083701
[8] LI Guo-Hui, XU Xin-Ye** . Raman Sideband Cooling of Two-Valence-Electron Fermionic Atoms[J]. Chin. Phys. Lett., 2011, 28(6): 083701
[9] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 083701
[10] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 083701
[11] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 083701
[12] QI Jian-Qing, WANG Lei, DAI Xi. Antiferromagnetism of Repulsively Interacting Fermions in a Harmonic Trap[J]. Chin. Phys. Lett., 2010, 27(8): 083701
[13] LI Ye, LIN Yi-Ge, ZHAO Yang, WANG Qiang, WANG Shao-Kai, YANG Tao, CAO Jian-Ping, LI Tian-Chu, FANG Zhan-Jun, ZANG Er-Jun. Stable Narrow Linewidth 689nm Diode Laser for the Second Stage Cooling and Trapping of Strontium Atoms[J]. Chin. Phys. Lett., 2010, 27(7): 083701
[14] XIA Tian, ZHOU Shu-Yu, CHEN Peng, LI Lin, HONG Tao, WANG Yu-Zhu. Continuous Imaging of a Single Neutral Atom in a Variant Magneto-Optical Trap\hyperlinks*[J]. Chin. Phys. Lett., 2010, 27(2): 083701
[15] LI Ben, CHEN Jing-Biao. Quantum Phase Transition of the Bosonic Atoms near the Feshbach Resonance in an Optical Lattice[J]. Chin. Phys. Lett., 2010, 27(12): 083701
Viewed
Full text


Abstract