NUCLEAR PHYSICS |
|
|
|
|
Solving the Dirac Equation with Nonlocal Potential by Imaginary Time Step Method |
ZHANG Ying1, LIANG Hao-Zhao1,2, MENG Jie1,3 |
1State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 1008712Institut de Physique Nucléaire, IN2P3-CNRS and Université Paris-Sud, F-91406 Orsay Cedex, France3Department of Physics, University of Stellenbosch, Stellenbosch, South Africa |
|
Cite this article: |
ZHANG Ying, LIANG Hao-Zhao, MENG Jie 2009 Chin. Phys. Lett. 26 092401 |
|
|
Abstract The imaginary time step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schrödinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schrödinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained.
|
Keywords:
24.10.Jv
21.60.-n
02.60.Nm
|
|
Received: 19 March 2009
Published: 28 August 2009
|
|
PACS: |
24.10.Jv
|
(Relativistic models)
|
|
21.60.-n
|
(Nuclear structure models and methods)
|
|
02.60.Nm
|
(Integral and integrodifferential equations)
|
|
|
|
|
[1] Tanihata I et al 1985 Phys. Rev. Lett. 55 2676 [2] Bertulani C A, Hussein M S and M\"{unzengerg G 2001 Physics of Radioactive Beams (New York: Nova Science) [3] Jonson B 2004 Phys. Rep. 389 1 [4] Jensen A S, Riisager K, Fedorov D V and Garrido E 2004 Rev. Mod. Phys. 76 215 [5] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1 [6] Ring P 1996 Prog. Part. Nucl. Phys. 37 193 [7] Vretenar D, Afanasjev A V, Lalazissis G A and Ring P 2005 Phys. Rep. 409 101 [8] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H and Geng L S2006 Prog. Part. Nucl. Phys. 57 470 [9] Meng J 1998 Nucl. Phys. A 635 3 [10] Meng J and Ring P 1996 Phys. Rev. Lett. 773963 [11] Long W H, Van Giai N and Meng J 2006 Phys. Lett. B 640 150 [12] Long W H, Sagawa H, Van Giai N and Meng J 2007 Phys.Rev. C 76 034314 [13] Long W H, Sagawa H, Meng J and Van Giai N 2008 Europhys. Lett. 82 12001 [14] Liang H Z, Van Giai N and Meng J 2008 Phys. Rev.Lett. 101 122502 [15] Sun B Y, Long W H, Meng J and Lombardo U 2008 Phys.Rev. C 78 065805 [16] Long W H, Ring P, Van Giai N and Meng JarXiv:0812.1103 [nucl-th] [17] Price C E and Walker G E 1987 Phys. Rev. C 36354 [18] Zhou S G, Meng J and Ring P 2003 Phys. Rev. C 68 034323 [19] Davies K T R, Flocard H, Krieger S and Weiss M S 1980 Nucl. Phys. A 342 111 [20] Bonche P, Flocard H and Heenen P H 2005 Com. Phys.Com. 171 49 [21] Zhang Y, Liang H Z and Meng J, arXiv:0905.2505 [nucl-th] [22] Grimm R and Storer R G 1970 J. Comput. Phys. 5 350 [23] Bouyssy A, Mathiot J F, Van Giai N and Marcos S 1987 Phys. Rev. C 36 380 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|