Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 092401    DOI: 10.1088/0256-307X/26/9/092401
NUCLEAR PHYSICS |
Solving the Dirac Equation with Nonlocal Potential by Imaginary Time Step Method
ZHANG Ying1, LIANG Hao-Zhao1,2, MENG Jie1,3
1State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 1008712Institut de Physique Nucléaire, IN2P3-CNRS and Université Paris-Sud, F-91406 Orsay Cedex, France3Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
Cite this article:   
ZHANG Ying, LIANG Hao-Zhao, MENG Jie 2009 Chin. Phys. Lett. 26 092401
Download: PDF(577KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The imaginary time step (ITS) method is applied to solve the Dirac equation with the nonlocal potential in coordinate space by the ITS evolution for the corresponding Schrödinger-like equation for the upper component. It is demonstrated that the ITS evolution can be equivalently performed for the Schrödinger-like equation with or without localization. The latter algorithm is recommended in the application for the reason of simplicity and efficiency. The feasibility and reliability of this algorithm are also illustrated by taking the nucleus 16O as an example, where the same results as the shooting method for the Dirac equation with localized effective potentials are obtained.
Keywords: 24.10.Jv      21.60.-n      02.60.Nm     
Received: 19 March 2009      Published: 28 August 2009
PACS:  24.10.Jv (Relativistic models)  
  21.60.-n (Nuclear structure models and methods)  
  02.60.Nm (Integral and integrodifferential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/092401       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/092401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Ying
LIANG Hao-Zhao
MENG Jie
[1] Tanihata I et al 1985 Phys. Rev. Lett. 55 2676
[2] Bertulani C A, Hussein M S and M\"{unzengerg G 2001 Physics of Radioactive Beams (New York: Nova Science)
[3] Jonson B 2004 Phys. Rep. 389 1
[4] Jensen A S, Riisager K, Fedorov D V and Garrido E 2004 Rev. Mod. Phys. 76 215
[5] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1
[6] Ring P 1996 Prog. Part. Nucl. Phys. 37 193
[7] Vretenar D, Afanasjev A V, Lalazissis G A and Ring P 2005 Phys. Rep. 409 101
[8] Meng J, Toki H, Zhou S G, Zhang S Q, Long W H and Geng L S2006 Prog. Part. Nucl. Phys. 57 470
[9] Meng J 1998 Nucl. Phys. A 635 3
[10] Meng J and Ring P 1996 Phys. Rev. Lett. 773963
[11] Long W H, Van Giai N and Meng J 2006 Phys. Lett. B 640 150
[12] Long W H, Sagawa H, Van Giai N and Meng J 2007 Phys.Rev. C 76 034314
[13] Long W H, Sagawa H, Meng J and Van Giai N 2008 Europhys. Lett. 82 12001
[14] Liang H Z, Van Giai N and Meng J 2008 Phys. Rev.Lett. 101 122502
[15] Sun B Y, Long W H, Meng J and Lombardo U 2008 Phys.Rev. C 78 065805
[16] Long W H, Ring P, Van Giai N and Meng JarXiv:0812.1103
[nucl-th]
[17] Price C E and Walker G E 1987 Phys. Rev. C 36354
[18] Zhou S G, Meng J and Ring P 2003 Phys. Rev. C 68 034323
[19] Davies K T R, Flocard H, Krieger S and Weiss M S 1980 Nucl. Phys. A 342 111
[20] Bonche P, Flocard H and Heenen P H 2005 Com. Phys.Com. 171 49
[21] Zhang Y, Liang H Z and Meng J, arXiv:0905.2505
[nucl-th]
[22] Grimm R and Storer R G 1970 J. Comput. Phys. 5 350
[23] Bouyssy A, Mathiot J F, Van Giai N and Marcos S 1987 Phys. Rev. C 36 380
Related articles from Frontiers Journals
[1] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 092401
[2] JIANG Zhi-Jin, SUN Yu-Fen. Energy and Centrality Dependences of Pseudorapidity Distributions of Charged Particles in Cu+Cu Collisions[J]. Chin. Phys. Lett., 2012, 29(2): 092401
[3] FANG De-Qing**, MA Yu-Gang, CAI Xiang-Zhou, TIAN Wen-Dong, WANG Hong-Wei . Effects of Neutron Skin Thickness in Peripheral Nuclear Reactions[J]. Chin. Phys. Lett., 2011, 28(10): 092401
[4] GAO Yuan, ZHANG Hong-Fei, ZHANG Lei, CHEN Xi-Meng, LI Jun-Qing, GUO Wen-Jun. Relativistic Mean Field Study of the Z=117 Isotopic Chain[J]. Chin. Phys. Lett., 2010, 27(6): 092401
[5] ZHANG Wei, LIANG Hao-Zhao, ZHANG Shuang-Quan, MENG Jie, . Search for Ring-Like Nuclei under Extreme Conditions[J]. Chin. Phys. Lett., 2010, 27(10): 092401
[6] XING Yong-Zhong, ZHENG Yu-Ming, WANG Yan-Yan, ZHANG Lin, QU Shi-Xian. Observation of Influence of Nucleons' Motion on Kaons Collective Flow in Dense Medium[J]. Chin. Phys. Lett., 2010, 27(1): 092401
[7] WANG Yan-Zhao, ZHANG Hong-Fei, DONG Jian-Min, SU Xin-Ning, ZUO Wei, LI Jun-Qing. Branching Ratios of α Decay for Nuclei near Deformed Shell Closures[J]. Chin. Phys. Lett., 2009, 26(6): 092401
[8] ZHANG Wei, PENG Jing, ZHANG Shuang-Quan. Description of 178Hfm2 in the Constrained Relativistic Mean Field Theory[J]. Chin. Phys. Lett., 2009, 26(5): 092401
[9] YU Zi, LIU Guang-Zhou, ZHU Ming-Feng, XU Yan, ZHAO En-Guang. Effects of δ Meson on Thermal Protoneutron Star Matter[J]. Chin. Phys. Lett., 2009, 26(2): 092401
[10] XING Yong-Zhong, ZHENG Yu-Ming, SRISAWAD Pornrad, YAN Yu-Peng, KOBDAJ Chinorat. Differential Directed Flow of K+ Meson within Covariant Kaon Dynamics[J]. Chin. Phys. Lett., 2009, 26(2): 092401
[11] ZHAO Peng-Wei, SUN Bao-Yuan, MENG Jie,. Deformation Effect on the Center-of-Mass Correction Energy in Nuclei Ranging from Oxygen to Calcium[J]. Chin. Phys. Lett., 2009, 26(11): 092401
[12] DONG Tie-Kuang, REN Zhong-Zhou,. Parity Violating Electron Scattering in the Relativistic Eikonal Approximation[J]. Chin. Phys. Lett., 2008, 25(7): 092401
[13] SUN Bao-Hua, MENG Jie, ,. Challenge on the Astrophysical R-Process Calculation with Nuclear Mass Models[J]. Chin. Phys. Lett., 2008, 25(7): 092401
[14] LIU Hong-Liang, XU Fu-Rong,. Triaxiality of High-K Isomers in A~130 Region[J]. Chin. Phys. Lett., 2008, 25(5): 092401
[15] LÜ, Hong-Feng. Extreme Exotic Calcium Lambda Hypernuclei in the Relativistic Continuum Hartree--Bogoliubov Theory[J]. Chin. Phys. Lett., 2008, 25(10): 092401
Viewed
Full text


Abstract