Chin. Phys. Lett.  2009, Vol. 26 Issue (9): 094701    DOI: 10.1088/0256-307X/26/9/094701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Acoustic Calculation for Supersonic Turbulent Boundary Layer Flow
LI Xin-Liang, FU De-Xun, MA Yan-Wen, GAO Hui
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LI Xin-Liang, FU De-Xun, MA Yan-Wen et al  2009 Chin. Phys. Lett. 26 094701
Download: PDF(1108KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An approach which combines direct numerical simulation (DNS) with the Lighthill acoustic analogy theory is used to study the potential noise sources during the transition process of a Mach 2.25 flat plate boundary layer. The quadrupole sound sources due to the flow fluctuations and the dipole sound sources due to the fluctuating surface stress are obtained. Numerical results suggest that formation of the high shear layers leads to a dramatic amplification of amplitude of the fluctuating quadrupole sound sources. Compared with the quadrupole sound source, the energy of dipole sound source is concentrated in the relatively low frequency range.
Keywords: 47.27.Sd      47.27.Ek      47.27.Nb     
Received: 19 May 2009      Published: 28 August 2009
PACS:  47.27.Sd (Turbulence generated noise)  
  47.27.ek (Direct numerical simulations)  
  47.27.nb (Boundary layer turbulence ?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/9/094701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I9/094701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xin-Liang
FU De-Xun
MA Yan-Wen
GAO Hui
[1] Wang M et al 2006 Ann. Rev. Fluid Mech. 38 483
[2] Lighthill M J 1952 Proc. R. Soc. London A 211564
[3] Wang M et al 1996 J. Fluid Mech. 319 197
[4] Curle N 1955 Proc. R. Soc. London A 231 505
[5] Powell A 1960 J. Acoust. Soc. Am. 32 982
[6] Shariff K and Wang M 2005 Phys. Fluids 17107105
[7] Hu Z W et al 2006 Phys. Fluids 18 098101
[8] Greshilov E M et al 1983 Sov. Phys. Acoust. 29 275
[9] Rai M M et al 1995 AIAA paper 95-0583
[10] Pirozzoli S et al 2004 Phys. Fluids 16 530
[11] Gao H et al 2005 Chin. Phys. Lett. 22 1709
[12] Wu M and Martin P 2007 AIAA J. 45 879
[13] Martin M P et al 2006 J. Comput. Phys. 220270
Related articles from Frontiers Journals
[1] WANG Li, LU Xi-Yun** . The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers[J]. Chin. Phys. Lett., 2011, 28(6): 094701
[2] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 094701
[3] LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow[J]. Chin. Phys. Lett., 2010, 27(6): 094701
[4] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 094701
[5] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 094701
[6] LIU Jian-Hua, JIANG Nan. Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 094701
[7] LIN Jian-Zhong, LI Hui-Jun, ZHANG Kai. Effect of Surface Roughness and Reynolds Number on Self-Similarity of Velocity Profile in the Atmospheric Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(3): 094701
[8] LIU Jian-Hua, JIANG Nan. Two Phases of Coherent Structure Motions in Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2007, 24(9): 094701
[9] ZHOU Ying, LI Xin-Liang, FU De-Xun, MA Yan-Wen. Coherent Structures in Transition of a Flat-Plate Boundary Layer at Ma =0.7[J]. Chin. Phys. Lett., 2007, 24(1): 094701
Viewed
Full text


Abstract