Chin. Phys. Lett.  2009, Vol. 26 Issue (10): 100601    DOI: 10.1088/0256-307X/26/10/100601
GENERAL |
Super-High Resolution Time Interval Measurement Method Based on Time-Space Relationships
DU Bao-Qiang1,2, ZHOU Wei1
1Institute of Signals and Data Processing, Xidian University, Xi'an 7100712Department of Information Engineering, Henan Vocation and Technical College, Zhengzhou 450046
Cite this article:   
DU Bao-Qiang, ZHOU Wei 2009 Chin. Phys. Lett. 26 100601
Download: PDF(295KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the principle of quantized delay-time, a super-high resolution time interval measurement method is proposed based on time-space relationships. Using the delay-time stability that time and frequency signal travel in a specific medium, the measured time interval can be quantized. Combined with the phase coincidence detection technique, the measurement of time can be changed into the measurement of space length. The resolution and the stability of the measurement system are easily improved. Experimental results show that the measurement resolution of the measured time interval depends on the length difference of the double delay-time unit. When the length difference is set up on millimeter level or sub-millimeter level, super-high measurement resolution from hundreds of picosecond to tens of picosecond can be obtained.
Keywords: 06.30.Ft      06.20.Dk     
Received: 26 May 2009      Published: 27 September 2009
PACS:  06.30.Ft (Time and frequency)  
  06.20.Dk (Measurement and error theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/10/100601       OR      https://cpl.iphy.ac.cn/Y2009/V26/I10/100601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Bao-Qiang
ZHOU Wei
[1] Ou X J, Zhou W, Li L et al 2006 Chin. J. ScientificInstrument. 4 36 (in Chinese)
[2] Wang H, Zhou W, Liu CH S et al 2008 J. XidianUniversity 35 267 (in Chinese)
[3] Li Z Q, Zhou W and Miao M 2008 Chin. Phys. Lett. 25 2820
[4] Li L and Zhou W 2007 IEEE Frequency ControlSymposium 5 815
[5] Du B Q, Zhou W, Dong SH F et al 2009 Chin. Phys.Lett. 26 070602
[6] Jansson J P and Mantyniemi A 2006 IEEE J. Solid-StateCircuits 41 1286
Related articles from Frontiers Journals
[1] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 100601
[2] DU Bao-Qiang, ZHOU Wei, YU Jian-Guo, DONG Shao-Feng . On Group Phase Quantization and Its Physical Characteristics[J]. Chin. Phys. Lett., 2011, 28(5): 100601
[3] ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency[J]. Chin. Phys. Lett., 2009, 26(9): 100601
[4] DU Bao-Qiang, ZHOU Wei, DONG Shao-Feng, ZHOU Hai-Niu. A Group-Period Phase Comparison Method Based on Equivalent Phase Comparison Frequency[J]. Chin. Phys. Lett., 2009, 26(7): 100601
[5] HAN Shun-Li, CHENG Bing, ZHANG Jing-Fang, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang. Stabilization and Shift of Frequency in an External Cavity Diode Laser with Solenoid-Assisted Saturated Absorption[J]. Chin. Phys. Lett., 2009, 26(6): 100601
[6] QI Xiang-Hui, CHEN Wen-Lan, YI Lin, ZHOU Da-Wei, ZHOU Tong, XIAO Qin, DUAN Jun, ZHOU Xiao-Ji, CHEN Xu-Zong. Ultra-Stable Rubidium-Stabilized External-Cavity Diode Laser Based on the Modulation Transfer Spectroscopy Technique[J]. Chin. Phys. Lett., 2009, 26(4): 100601
[7] LI Zhi-Qi, ZHOU Wei, MIAO Miao, ZHOU Hui, ZHENG Sheng-Feng. A Super High Resolution Distance Measurement Method Based on Phase Comparison[J]. Chin. Phys. Lett., 2008, 25(8): 100601
[8] YU De-Shui, ZHUANG Wei, CHEN Jing-Biao. Microlaser with Ramsey Separated Fields Cavity[J]. Chin. Phys. Lett., 2007, 24(6): 100601
[9] ZHANG Jian-Wei, YANG Dong-Hai. High Performance Small Optically Pumped Caesium Beam Frequency Standard[J]. Chin. Phys. Lett., 2007, 24(6): 100601
[10] LI Tian-Chu, LI Ming-Shou, LIN Ping-Wei, WANG Ping, CHEN Wei-Liang, LIU Nian-Feng, LIN Yi-Ge. Improvements and New Evaluation of NIM4 Caesium Fountain Clock at NIM in 2005--2006[J]. Chin. Phys. Lett., 2007, 24(5): 100601
[11] WU Qin-Qin, ZHOU Lan, KUANG Le-Man. Linear Optical Implementation of Quantum Clock Synchronization Algorithm[J]. Chin. Phys. Lett., 2006, 23(2): 100601
[12] PAN Shi-Long, LOU Cai-Yun. Theoretical Design of Fibre-Based Digital Autocorrelator for Completely Characterizing Ultrashort Pulses[J]. Chin. Phys. Lett., 2006, 23(2): 100601
[13] BIAN Feng-Gang, WEI Rong, JIANG Hai-Feng, WANG Yu-Zhu. A Movable-Cavity Cold Atom Space Clock[J]. Chin. Phys. Lett., 2005, 22(7): 100601
[14] KANG Zhi-Ru, FU Guang-Sheng, K. D. Hill. Equations of Propagation of Uncertainty on the ITS-90 in the Sub-ranges from 13.8033K to 933.473K[J]. Chin. Phys. Lett., 2005, 22(3): 100601
[15] ZHOU Wei, XUAN Zong-Qiang, YU Jian-Guo, WANG Hai, ZHOU Hui, LI Zhi-Qi. A Novel Frequency Measurement Method Suitable for a Large Frequency Ratio Condition[J]. Chin. Phys. Lett., 2004, 21(5): 100601
Viewed
Full text


Abstract