Chin. Phys. Lett.  2009, Vol. 26 Issue (11): 114208    DOI: 10.1088/0256-307X/26/11/114208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Intensity Correlation Function of Light Scattering from a Weakly One-Dimensional Random Rough Surface
WU Zhen-Sen, ZHANG Geng
Science School, Xidian University, Xi'an 710071
Cite this article:   
WU Zhen-Sen, ZHANG Geng 2009 Chin. Phys. Lett. 26 114208
Download: PDF(470KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the Kirchhoff approximation and Gaussian moment theorem, we present a general expression of the intensity correlation scattered from a weakly one-dimensional rough surface, which is applicable to the cases by either two different wavelengths or two different angles of incidence. By using a Gaussian surface model, we give the numerical results for the
intensity correlation function with two different wavelengths specially. The results show that with the increasing surface roughness and the decreasing surface correlation length, the correlation function decreases in specular direction and increases in other directions, which indicates that the study of the correlation of the intensities is helpful when investigating the statistical parameters of rough objects. Also the results show that the increase of rms roughness can result in the narrower correlation bandwidth.
Keywords: 42.25.Fx      42.25.Bs     
Received: 08 April 2009      Published: 30 October 2009
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Bs (Wave propagation, transmission and absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/11/114208       OR      https://cpl.iphy.ac.cn/Y2009/V26/I11/114208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Zhen-Sen
ZHANG Geng
[1] Ishimaru A 1978 Wave Propagation and Scattering inRandom Media (New York: Academic)
[2] Nitta H and Asakura T 1991 Appl. Opt. 30 4854
[3] Ishimaru A et al 1994 Waves Random Media 4 139
[4] Chen L 1978 Acta Phys. Sin. 6 651 (in Chinese)
[5] Chen L and Zhang B Q 1980 Acta Phys. Sin. 12 1570(in Chinese)
[6] Ren X C and Guo L X 2008 Chin. Phys. Lett. 25101
[7] Zhang N Y et al 2009 Chin. Phys. Lett. 26034209
[8] Guo G J and Shao Y 2004 Acta Phys. Sin. 532089 (in Chinese)
[9] Briers J D 1996 J. Opt. Soc. Am. A 13 345
[10] Yan Q et al 2009 Chin. Phys. Lett. 26 044201
[11] Gong Y J and Wu Z S 2009 Chin. Phys. Lett. 26024213
[12] Yura H T, Hanson S G and Lading L 1995 J. Opt. Soc.Am. A 12 2040
[13] Goodman J W 1984 Laser Speckle and RelatedPhenomena (Berlin: Springer)
[14] Xu Z W, Wu J, Wu Z S and Li L W 2007 IEEE Trans.Anten. Propagat. 55 1407
[15] Ohlidal M and Prazak D 2003 J. Mod. Opt. 502133
[16] Shirley L G and Lo P A 1994 J. Opt. Soc. Am. A 11 1025
[17] Ruffing B 1986 J. Opt. Soc. Am. A 3 1297
[18] Beckmann P and Spizzichino A 1963 The Scattering ofElectromagnetic Waves from Rough Surfaces (Oxford: Pergamon)
[19] Shirley L G and George N 1989 J. Opt. Soc. Am. A 6 765
[20] Gradshteyn J S and Ryzhik J M 1965 Table ofIntegrals, Series and Products (New York: Academic)
Related articles from Frontiers Journals
[1] LIU Dong, FU Yong-Qi, YANG Le-Chen, ZHANG Bao-Shun, LI Hai-Jun, FU Kai, XIONG Min. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors[J]. Chin. Phys. Lett., 2012, 29(6): 114208
[2] LI Dong-Hua, PU Ji-Xiong, WANG Xi-Qing. Optical Torque Exerted on a Rotator under Illumination of a Vortex Beam[J]. Chin. Phys. Lett., 2012, 29(6): 114208
[3] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 114208
[4] YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. Chin. Phys. Lett., 2012, 29(4): 114208
[5] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 114208
[6] PAN Wei-Tao, LIU Song-Hua, QIU Zhi-Liang. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media[J]. Chin. Phys. Lett., 2012, 29(3): 114208
[7] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 114208
[8] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 114208
[9] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 114208
[10] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 114208
[11] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 114208
[12] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 114208
[13] LI Hai-Xia, CHENG Chuan-Fu** . Light Scattering of Rough Orthogonal Anisotropic Surfaces with Secondary Most Probable Slope Distributions[J]. Chin. Phys. Lett., 2011, 28(8): 114208
[14] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 114208
[15] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 114208
Viewed
Full text


Abstract