CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Equation of State of Tantalum up to 133GPa |
TANG Ling-Yun1, LIU Lei2, LIU Jing1, XIAO Wan-Sheng3, LI Yan-Chun1, LI Xiao-Dong1, BI Yan2 |
1Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 1000492National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Mianyang 6219003Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 |
|
Cite this article: |
TANG Ling-Yun, LIU Lei, LIU Jing et al 2010 Chin. Phys. Lett. 27 016402 |
|
|
Abstract The static equation of state (EOS) of tantalum (Ta) is determined by in situ energy-dispersive synchrotron powder x-ray diffraction in a diamond anvil cell (DAC) up to 133GPa. The body-centered-cubic (bcc) phase of Ta is found to be stable over the entire pressure range investigated. The bulk moduli and its first pressure derivative of Ta are constrained by fitting the determined pressure-volume data to Vinet form EOS: B0 =192.65±(3.08)GPa and B'0 =3.58±(0.11). For the sake of avoiding the affect of non-hydrostatic stress, argon is used as a pressure media. A careful checking of the stress state of the sample is presented simultaneously.
|
Keywords:
64.30.Ef
62.50.-p
07.35.+k
|
|
Received: 21 September 2009
Published: 30 December 2009
|
|
PACS: |
64.30.Ef
|
(Equations of state of pure metals and alloys)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
|
|
|
[1] Mitechell A C and Nellis W J 1981 J. Appl. Phys. 52 3363 [2] Holmes N C, Moriarty J A, Gathers G R and Nellis W J 1989 J. Appl. Phys. 66 2962 [3] Soderlind P and Moriarty J 1998 Phys. Rev. B 57 10340 [4] Hultgren R, Desai P D, Hawkins D T, Gleiser M, Kelley K Kand Wagman D D 1973 Selected Values of the ThermodynamicalProperties of the Elements (Metals Park, OH: American Society forMetals) [5] Cynn H and Yoo C S 1999 Phys. Rev. B 59 8526 [6] Hanfland M, Syassen K and Kohler J 2002 J. Appl.Phys. 91 4143 [7] Holzapfel B 2003 J. Appl. Phys. 93 1813 [8] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev.B 69 092106 [9] Dewaele A, Loubeyre P and Mezouar M 2004 Phys. Rev.B 70 094112 [10] Bolef D I 1961 J. Appl. Phys. 32 100 [11] Featherston F H and Neighbous J R 1963 Phys. Rev. 130 1324 [12] Soga N 1966 J. Appl. Phys. 37 3416 [13] Leisure R G, Hsu D K and Seiber B A 1973 J. Appl.Phys. 44 3394 [14] Katahara K W, Manghnani M H and Fisher E S 1976 J.Appl. Phys. 47 434 [15] Sarro J L, Chen S R, Visscher W M et al 1994 Rev.Sci. Instrum. 65 2139 [16] Soderlind P and Moriarty J A 1998 Phys. Rev. B 57 10340 [17] Wang Y, Chen D and Zhang X 2000 Phys. Rev. L 84 3220 [18] Wang Y, Ahuja R and Johansson B 2002 J. Appl. Phys. 92 6616 [19] Chijilke A D, Nellis W J and Silvera I F 2005 J.Appl. Phys. 98 073526 [20] You S J, Chen L C and Jin C Q 2009 Chin. Phys.Lett. 26 096202 [21] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673 [22] Vinet P, Ferrante J, Rose J and Smith J 1987 J.Geophys. Res. 92 9319 [23] Takemura K and Dewaele A 2008 Phys. Rev. B 78 104119 [24] Kenichi T and Singh A K 2006 Phys. Rev. B 73224119 [25] Piermarini G J, Block S and Barnett J D 1973 J.Appl. Phys. 44 5377 [26] Bell P M and Mao H K 1981 Year Book-Carnegie Inst.Washington 80 404 [27] Chai M and Brown J M 1966 Geophys. Res. Lett. 23 3539 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|