Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 017701    DOI: 10.1088/0256-307X/27/1/017701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Phase Structures of (K0.48Na0.52)0.945Li0.055Sb0.05Nb0.95O3 Piezoceramics
ZANG Guo-Zhong, YI Xiu-Jie, XU Zhi-Jun, FU Peng, ZHAO Li-Min, PU Xi-Peng
School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059
Cite this article:   
ZANG Guo-Zhong, YI Xiu-Jie, XU Zhi-Jun et al  2010 Chin. Phys. Lett. 27 017701
Download: PDF(389KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The phase structures of lead-free (K0.48Na0.52)0.945Li0.055Sb0.05Nb0.95O3 piezoceramics are studied based on the measurements of ferroelectric and dielectric properties as well as the analyses of x-ray diffraction pattern and energy dispersive spectroscopy. The poled samples exhibit orthorhombic structure whereas the surface and interior for unpoled samples exhibit tetragonal and tetragonal-orthorhombic coexistent structures, respectively. These results are in agreement with the relative permittivity-temperature curves and demonstrate that phase transitions can be induced by Na volatilization and poling process. The remnant polarization Pr measured at 20°C increases continuously with the increase of electric field in the range of 2000-4000V/mm. This indicates that the polymorphic structure is more beneficial to the rotation or reorientation of dipoles than either the orthorhombic or the tetragonal structure. The randomly oriented domains may be the essential reason for the continuous rotation or reorientation and not good thermal stability.
Keywords: 77.80.Bh      77.22.Ch      77.84.Dy     
Received: 03 June 2009      Published: 30 December 2009
PACS:  77.80.Bh  
  77.22.Ch (Permittivity (dielectric function))  
  77.84.Dy  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/017701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/017701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZANG Guo-Zhong
YI Xiu-Jie
XU Zhi-Jun
FU Peng
ZHAO Li-Min
PU Xi-Peng

[1] Saito Y et al 2004 Nature 432 84
[2] Guo Y P, Kakimoto K and Hitoshi O 2004 Appl. Phys.Lett. 85 4121
[3] Zang G Z et al 2006 Appl. Phys. Lett. 88212908
[4] Zhang S J, Xia R and Shrout T 2007 Appl. Phys. Lett. 91 132913
[5] Dai Y J, Zhang X W and Zhou G Y 2007 Appl. Phys.Lett. 90 362903
[6] Du J et al 2008 Chin. Phys. Lett. 25 1446
[7] Zhang S J et al 2007 Solid State Commun. 141675
[8] Ming B Q et al 2008 Acta Physica Sinica 575962
[9] Zhao P, Zhang B P and Li J F 2007 Appl. Phys. Lett. 90 342909
[10] Guo R Y et al 2000 Phys. Rev. Lett. 84 5423
[11] Ren W, Liu S F and Mukhurjee B K 2002 Appl. Phys.Lett. 80 3174
[12] Park S E and Shrout T R1997 J. Appl. Phys. 821804
[13] Damjanovic D 2001 Ann. Chim. Sci. Mat 26 99
Related articles from Frontiers Journals
[1] ZHAO Liang,SHEN Ming-Rong*,CAO Wen-Wu. Pyroelectric Study on Dipolar Alignment in 0.69Pb(Mg1/3Nb2/3)O3−0.31PbTiO3 Single Crystals[J]. Chin. Phys. Lett., 2012, 29(4): 017701
[2] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 017701
[3] CUI Lian, XU Quan, HAN Zhi-You, XU Xu. Size Effects of the Properties in a Ferroelectric Bilayer Film with Surface Transition Layers[J]. Chin. Phys. Lett., 2012, 29(3): 017701
[4] HOU Zhi-Ling**, KONG Ling-Bao, JIN Hai-Bo, CAO Mao-Sheng, LI Xiao, QI Xin. The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors[J]. Chin. Phys. Lett., 2012, 29(1): 017701
[5] LIU Li-Ming, ZENG Hua-Rong**, CAO Zhen-Zhu, LENG Xue, ZHAO Kun-Yu, LI Guo-Rong, YIN Qing-Rui . Piezoresponse Force Microscopy Imaging of Ferroelectric Domains in Bi(Zn1/2Ti1/2)O3−Pb(Mg1/3Nb2/3)O3−PbTiO3 Piezoelectric Ceramics[J]. Chin. Phys. Lett., 2011, 28(8): 017701
[6] DU Juan**, WANG Jin-Feng, ZANG Guo-Zhong, YI Xiu-Jie . Ca0.5Sr0.5TiO3-Modified KNN-Based Lead-Free Piezoceramics with a Wide Temperature Usage Span[J]. Chin. Phys. Lett., 2011, 28(6): 017701
[7] HE Xiao-Yang, CHEN Qi, LI Lin-Cui, YANG Chun**, LI Biao, ZHOU Bang-Hua, TANG Chuan-Xiang . Nonresonant Metamaterials with an Ultra-High Permittivity[J]. Chin. Phys. Lett., 2011, 28(5): 017701
[8] WU Yu-Qiang, WU Hong-Ying**, ZHAO Jie, LU Cui-Min, ZHANG Bao-Long, LIU Qing-Suo, MA Yong-Chang, . The Evidence for Ferroelectricity on Magnetite Ceramics below the Verwey Transition[J]. Chin. Phys. Lett., 2011, 28(12): 017701
[9] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 017701
[10] MA Yong-Chang, ZHANG Jian-Zhu, ZHAO Jie, LIU Qing-Suo. Temperature- and Frequency-Dependent Dielectric Properties of La1.5Sr0.5NiO4-δ[J]. Chin. Phys. Lett., 2010, 27(8): 017701
[11] YANG Lu. Electrical Characterization of Deep Trap Properties in High-k Thin-Film HfO2 Dielectric[J]. Chin. Phys. Lett., 2010, 27(7): 017701
[12] WANG Da-Wei&#, , JIN Hai-Bo&#, , YUAN Jie, WEN Bao-Li ZHAO Quan-Liang, ZHANG De-Qing, CAO Mao-Sheng. Mechanical Reinforcement and Piezoelectric Properties of PZT Ceramics Embedded with Nano-Crystalline[J]. Chin. Phys. Lett., 2010, 27(4): 017701
[13] WANG Wei, WANG Xiao-Juan, ZHU Jun, MAO Xiang-Yu, CHEN Xiao-Bing. Relaxation of Dielectric Loss Peak over Intermediate Temperature Range in Bi5TiNbWO15 Intergrowth[J]. Chin. Phys. Lett., 2009, 26(4): 017701
[14] DU Juan, WANG Jin-Feng, ZHENG Li-Mei, WANG Chun-Ming, QI Peng, ZANG Guo-Zhong. KNN Based Lead-Free Piezoceramics with Improved Thermal Stability[J]. Chin. Phys. Lett., 2009, 26(2): 017701
[15] ZHENG Li-Mei, WANG Jin-Feng, WANG Chun-Ming, WU Qing-Zao, ZANG Guo-Zhong. Thermal Stability and Humidity Resistance of ScTaO4 Modified (K0.5Na0.5)NbO3 Ceramics[J]. Chin. Phys. Lett., 2009, 26(12): 017701
Viewed
Full text


Abstract