Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 018701    DOI: 10.1088/0256-307X/27/1/018701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Competitive Exclusion Principle Revised by Noise
LIU Yong-Jiang, WANG Ai-Ling, WANG Biao, LIU Zhao-Hua
Key Laboratory for AMT Shanxi, North University of China, Taiyuan 030051
Cite this article:   
LIU Yong-Jiang, WANG Ai-Ling, WANG Biao et al  2010 Chin. Phys. Lett. 27 018701
Download: PDF(312KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fundamental tenet in theoretical ecology is the competitive exclusion principle. Two competitive species for a limited resource cannot coexist and thus one of the species will be driven to extinction. However, we show that noise can revise this principle in a resonance-like manner, which makes coherence resonance in the system. Our obtained results well enrich the findings in the interaction of populations in ecosystems, which may explain some filed observations in the real world.
Keywords: 87.23.Cc      82.40.Ck      05.45.Pq     
Received: 07 September 2009      Published: 30 December 2009
PACS:  87.23.Cc (Population dynamics and ecological pattern formation)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/018701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/018701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yong-Jiang
WANG Ai-Ling
WANG Biao
LIU Zhao-Hua

[1] Park T 1948 Ecol. Monogr. 18 265
[2] Park T 1954 Physiol. Zool. 27 177
[3] Park T 1957 Physiol. Zool. 30 22
[4] Park T, Leslie P H, and Mertz D B 1964 Physiol.Zool. 37 97
[5] Cushing J M, Levarge S, Chitnis N and Henson S M 2004 Journal of Difference Equations and Applications 10 1139
[6] Leslie P H and Gower J C 1958 Biometrika 45316
[7] Holling C S 1973 Annu. Rev. Ecol. Syst. 4 1
[8] Folke C, Carpenter S R, Walker B, Scheffer M, Elmqvist T,Gunderson L H and Holling C 2004 Annu. Rev. Ecol. Evol. Syst. 35 557
[9] Scheffer M and Rinaldi S 2000 Freshwater Biol. 45 265
[10] Guttal V and Jayaprakash C 2007 Ecol. Model. 201 420
[11] Murray J D 1988 Mathematical Biology (Springer-Verlag,Berlin)
[12] Vilar J M G and Sol\'{e R V 1998 Phys. Rev. Lett. 80 4099
[13] Reichenbach T, Mobilia M and Frey E 2007 Phys. Rev. Lett. 99 238105
[14] Reichenbach T, Mobilia M and Frey E 2007 Nature 4481046
[15] Liu Q X, Li B and Jin Z 2008 J. Stat. Mech. P05011
[16] Blasius B, Huppert A and Stone L 1999 Nature 399 354
[17] Mankin R et al 2002 Phys. Rev. E 65 051108
[18] Mankin R et al 2004 Phys. Rev. E 69 061106
[19] Higham D J 2001 SIAM Rev. 43 525
[20] Sun G Q, Jin Z, Liu Q X and Li L 2009 J. Biol.Phys. 35 185
[21] Perc M 2005 Phys. Rev. E 72 016207
[22] Perc M 2005 New J. Phys. 7 252
[23] Perc M 2008 New J. Phys. 8 22
[24] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[25] Sun G Q, Jin Z, Liu Q X and Li L 2008 Chin. Phys.Lett. 25 2296
[26] Li L, Jin Z and Sun G Q 2008 Chin. Phys. Lett. 25 3500
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 018701
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 018701
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 018701
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 018701
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 018701
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 018701
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 018701
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 018701
[9] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 018701
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 018701
[11] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 018701
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 018701
[13] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 018701
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 018701
[15] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 018701
Viewed
Full text


Abstract