GENERAL |
|
|
|
|
Synchronization Control of Two Different Chaotic Systems with Known and Unknown Parameters |
GUAN Jun-Biao |
School of Science, Hangzhou Dianzi University, Hangzhou 310018 |
|
Cite this article: |
GUAN Jun-Biao 2010 Chin. Phys. Lett. 27 020502 |
|
|
Abstract Chaos synchronization of two different chaotic systems with known and unknown parameters is studied. Based on the Lyapunov stability theory, two different chaotic systems with known parameters realize global synchronization via the successfully designed nonlinear controller. By employing an adaptive synchronization scheme, the synchronization of two different chaotic systems with unknown parameters is achieved. Numerical simulations validate the effectiveness of the theoretical analysis.
|
Keywords:
05.45.Xt
05.45.Gg
87.19.Lr
|
|
Received: 18 August 2009
Published: 08 February 2010
|
|
PACS: |
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
87.19.lr
|
(Control theory and feedback)
|
|
|
|
|
[1] Yang L, Zhang X, Wang A, Guo D and Wang Y 2008 Chin. Phys. Lett. 25 3883 [2] Ma J, Wang Q, Jin W and Xia Y 2008 Chin. Phys. Lett. 25 3582 [3] Pyragas K 1992 Phys. Lett. A 170 421 [4] Xiao J and Yi Y 2007 Chaos, Solitons {\rm\& Fractals 33 908 [5] Wu X, Guan Z, Wu Z and Li T 2007 Phys. Lett. A 364 484 [6] Kilic R, Alci M and G\"{unay E 2004 Int. J. Bifur. Chaos 9 3277 [7] Chen H, Sheu G, Lin Y and Chen C 2009 Nonl. Anal. 70 4393 [8] Li G 2007 Chaos, Solitons {\rm\& Fractals 32 1454 [9] Sun X and Lu Q 2009 Chin. Phys. Lett. 26 060507 [10] Liu C, Liu T, Liu L and Liu K 2004 Chaos Solitons {\rm\& Fractals 22 1031 [11] Liu C 2009 Chaos Solitons {\rm\& Fractals 39 1037 [12] Li J 2008 Chin. Phys. Lett. 25 413 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|