Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 024701    DOI: 10.1088/0256-307X/27/2/024701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections
WANG Gang1,2, ZHANG De-Liang2, LIU Kai-Xin1,3
1LTCS and College of Engineering, Peking University, Beijing 1008712LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 1001903Center for Applied Physics and Technology, Peking University, Beijing 100871
Cite this article:   
WANG Gang, ZHANG De-Liang, LIU Kai-Xin 2010 Chin. Phys. Lett. 27 024701
Download: PDF(1895KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The critical wedge angle (CWA) for the transition from regular reflection (RR) to Mach reflection (MR) of a cellular detonation wave is studied numerically by an improved space-time conservation element and solution element method together with a two-step chemical reaction model. The accuracy of that numerical way is verified by simulating cellular detonation reflections at a 19.3° wedge. The planar and cellular detonation reflections over 45°-55° wedges are also simulated. When the cellular detonation wave is over a 50° wedge, numerical results show a new phenomenon that RR and MR occur alternately. The transition process between RR and MR is investigated with the local pressure contours. Numerical analysis shows that the cellular structure is the essential reason for the new phenomenon and the CWA of detonation reflection is not a certain angle but an angle range.
Keywords: 47.40.Rs      82.33.Vx      02.60.Cb     
Received: 11 February 2009      Published: 08 February 2010
PACS:  47.40.Rs (Detonation waves)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/024701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/024701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Gang
ZHANG De-Liang
LIU Kai-Xin
[1] Akbar R 1997 PhD Dissertation (Rensselaer Polytechnic Institute)
[2] Ohyag S et al 2000 Shock Waves 10 185
[3] Yu Q 1996 PhD Dissertation (RWTH, Aachen, Germany)
[4] Hu Z M et al 2004 Acta Mech. Sin. 36 385
[5] Meltzer J et al 1991 Progress in Astronautics and Aeronautics 153 78
[6] Gavrilenko T P and Prokhorov E S 1982 Combust. Explor. Shock 17 689
[7] Li H, Ben-Dor G and Gronig H 1997 AIAA J. 35 1712
[8] Wang G, Zhang D L and Liu K X 2007 Chin. Phys. Lett. 24 3563
[9] Wang G et al 2010 Comput. Fluids 39 168
[10] Taki S and Fujiwara T 1984 Progress in Astronautics and Aeronautics 94 186
[11] Chang S C 1995 J. Comput. Phys. 119 295
[12] Chang S C, Wang X Y and Chow C Y 1999 J. Comput. Phys. 156 89
[13] Liu K X and Wang J T 2004 Chin. Phys. Lett. 21 2085
[14] Wang C, Jiang Z L and Gao Y L 2008 Chin. Phys. Lett. 25 3704
[15] Han G L et al 2008 Chin. Phys. Lett. 25 2125
[16] Sichel M et al 2002 Proc. R. Soc. London A 458 49
[17] Kee R J et al 1996 SAND96-8216
[18] Guo C M, Zhang D L and Xie W 2001 Combust. Flame 127 2051
[19] Ben-Dor G 1978 UTIAS Pepotr No 232
[20] Kailasanath K et al 1985 Combust. Flame 61 199
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 024701
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 024701
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 024701
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 024701
[5] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 024701
[6] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 024701
[7] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 024701
[8] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 024701
[9] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 024701
[10] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 024701
[11] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[12] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 024701
[13] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 024701
[14] SUN Xiao-Hui, CHEN Zhi-Hua**, ZHANG Huan-Hao . MHD Control of Oblique Detonation Waves[J]. Chin. Phys. Lett., 2011, 28(1): 024701
[15] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 024701
Viewed
Full text


Abstract