CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa |
TIAN Bao-Li1,2, DU Zu-Liang2, MA Yan-Mei1, LI Xue-Fei1, CUI Qi-Liang1, CUI Tian1, LIU Bing-Bing1, ZOU Guang-Tian1
|
1State Key Laboratory of Superhard Materials, Jilin University, Changchun 1300122Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 457004 |
|
Cite this article: |
TIAN Bao-Li, DU Zu-Liang, MA Yan-Mei et al 2010 Chin. Phys. Lett. 27 026103 |
|
|
Abstract High pressure behavior of sodium titanate nanotubes (Na2Ti2O5) is investigated by Raman spectroscopy in a diamond anvil cell (DAC) at room temperature. The two pressure-induced irreversible phase transitions are observed under the given pressure. One occurs at about 4.2 GPa accompanied with a new Raman peak emerging at 834 cm-1 which results from the lattice distortion of the Ti-O network in titanate nanotubes. It can be can be assigned to Ti-O lattice vibrations within lepidocrocite-type (H0.7Ti1.825V0.175O412539;H2O)TiO6 octahedral host layers with V being vacancy. The structure of the nanotubes transforms to orthorhombic lepidocrocite structure. Another amorphous phase transition occurs at 16.7 GPa. This phase transition is induced by the collapse of titanate nanotubes. All the Raman bands shift toward higher wavenumbers with a pressure dependence ranging from 1.58-5.6 cm-1/GPa.
|
Keywords:
61.46.-w
62.50.-p
63.22.-m
|
|
Received: 21 August 2009
Published: 08 February 2010
|
|
PACS: |
61.46.-w
|
(Structure of nanoscale materials)
|
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
|
|
|
[1] Kasuga T, Hiramatsu M, Hoson A, Sekino T and Niihara K 1998 Langmuir 14 3160 [2] Yao B D, Chan Y F, Zhang X Y, Zhang W F, Yang Z Y and Wang N 2003 Appl. Phys. Lett. 82 281 [3] Zhang S, Peng L M, Chen Q, Du G H, Dawson G and Zhou W Z 2003 Phys. Rev. Lett. 91 256103 [4] Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K and Aritani H 2004 J. Mater. Sci. 39 4239 [5] Ma R, Bando Y and Sasaki T 2003 Chem. Phys. Lett. 380 577 [6] Yang J J, Jin Z S, Wang X D, Li W, Zhang J W, Zhang S L, Guo X Y and Zhang Z J, 2003 Dalton Trans. 20 3898 [7] Gao T, Fjellv{\aag H and Norby P 2009 Inorg. Chem. 48 1423 [8] Qamar M, Yoon CR, Oh H J, Kim D H, Jho J H, Lee K S, Lee W J, Lee H G and Kim S J 2006 Nanotechnology 17 5922 [9] Bavykin D V, Friedrich J M, Lapkin A A and Walsh F C 2006 Chem. Mater. 18 1124 [10] Ma R Z, Fukuda K, Sasaki T, Osada M and Bando Y 2005 J. Phys. Chem. B 109 6210 [11] Tian B L, Zhang X T, Dai S X, Cheng K, Jin Z S, Huang Y B, Du Z L, Zou G T and Zou B S 2008 J. Phys. Chem. C 112 5361 [12] Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276 [13] Ohsaka T, Izumi F and Fujiki Y 1978 J. Raman Spectrosc. 7 321 [14] Miyaji F, Yoko T, Kozuka H and Sakka S 1991 J. Mater. Sci. 26 248 [15] Kim H M, Miyaji F and Kokubo T 1997 J. Mater. Sci.: Mater. Med. 8 341 [16] Tsai C C and Teng H 2006 Chem. Mater. 18 367 [17]Sasaki T, Watanbe M, Hashizume H, Yamada H and Nakazawa H 1996 J. Am. Chem. Soc. 118 8329 [18] Tkach A, Vilarinho P M, Kholkin A L, Pashkin A, Samoukhina P, Pokorny J, Veljko S and Petzelt J 2005 J. Appl. Phys. 97 044104 [19] Zhang F X, Manoun B, Saxena S K and Zha C S 2005 Appl. Phys. Lett. 86 181906 [20] Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza M, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D and Witcomb M J 2004 Phys. Rev. B 70 134102 [21] Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G and Muddle B C 2005 Phys. Rev. B 71 184302 [22] Yang J, Zhang J S, Wu X F and Gong Q H 2009 Chin. Phys. Lett. 26 067802 [23] Peter A J and Lakshminarayana V 2008 Chin. Phys. Lett. 25 3021 [24] Zhao D, Song Y H and Wang Y N 2008 Chin. Phys. Lett. 25 2588 [25] Zhou L, Yu X F, Fu X F, Hao Z H and Li K Y 2008 Chin. Phys. Lett. 25 1776 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|