Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 026103    DOI: 10.1088/0256-307X/27/2/026103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa
TIAN Bao-Li1,2, DU Zu-Liang2, MA Yan-Mei1, LI Xue-Fei1, CUI Qi-Liang1, CUI Tian1, LIU Bing-Bing1, ZOU Guang-Tian1
1State Key Laboratory of Superhard Materials, Jilin University, Changchun 1300122Key Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 457004
Cite this article:   
TIAN Bao-Li, DU Zu-Liang, MA Yan-Mei et al  2010 Chin. Phys. Lett. 27 026103
Download: PDF(485KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High pressure behavior of sodium titanate nanotubes (Na2Ti2O5) is investigated by Raman spectroscopy in a diamond anvil cell (DAC) at room temperature. The two pressure-induced irreversible phase transitions are observed under the given pressure. One occurs at about 4.2 GPa accompanied with a new Raman peak emerging at 834 cm-1 which results from the lattice distortion of the Ti-O network in titanate nanotubes. It can be can be assigned to Ti-O lattice vibrations within lepidocrocite-type (H0.7Ti1.825V0.175O4・H2O)TiO6 octahedral host layers with V being vacancy. The structure of the nanotubes transforms to orthorhombic lepidocrocite structure. Another amorphous phase transition occurs at 16.7 GPa. This phase transition is induced by the collapse of titanate nanotubes. All the Raman bands shift toward higher wavenumbers with a pressure dependence ranging from 1.58-5.6 cm-1/GPa.
Keywords: 61.46.-w      62.50.-p      63.22.-m     
Received: 21 August 2009      Published: 08 February 2010
PACS:  61.46.-w (Structure of nanoscale materials)  
  62.50.-p (High-pressure effects in solids and liquids)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/026103       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/026103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Bao-Li
DU Zu-Liang
MA Yan-Mei
LI Xue-Fei
CUI Qi-Liang
CUI Tian
LIU Bing-Bing
ZOU Guang-Tian
[1] Kasuga T, Hiramatsu M, Hoson A, Sekino T and Niihara K 1998 Langmuir 14 3160
[2] Yao B D, Chan Y F, Zhang X Y, Zhang W F, Yang Z Y and Wang N 2003 Appl. Phys. Lett. 82 281
[3] Zhang S, Peng L M, Chen Q, Du G H, Dawson G and Zhou W Z 2003 Phys. Rev. Lett. 91 256103
[4] Nakahira A, Kato W, Tamai M, Isshiki T, Nishio K and Aritani H 2004 J. Mater. Sci. 39 4239
[5] Ma R, Bando Y and Sasaki T 2003 Chem. Phys. Lett. 380 577
[6] Yang J J, Jin Z S, Wang X D, Li W, Zhang J W, Zhang S L, Guo X Y and Zhang Z J, 2003 Dalton Trans. 20 3898
[7] Gao T, Fjellv{\aag H and Norby P 2009 Inorg. Chem. 48 1423
[8] Qamar M, Yoon CR, Oh H J, Kim D H, Jho J H, Lee K S, Lee W J, Lee H G and Kim S J 2006 Nanotechnology 17 5922
[9] Bavykin D V, Friedrich J M, Lapkin A A and Walsh F C 2006 Chem. Mater. 18 1124
[10] Ma R Z, Fukuda K, Sasaki T, Osada M and Bando Y 2005 J. Phys. Chem. B 109 6210
[11] Tian B L, Zhang X T, Dai S X, Cheng K, Jin Z S, Huang Y B, Du Z L, Zou G T and Zou B S 2008 J. Phys. Chem. C 112 5361
[12] Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276
[13] Ohsaka T, Izumi F and Fujiki Y 1978 J. Raman Spectrosc. 7 321
[14] Miyaji F, Yoko T, Kozuka H and Sakka S 1991 J. Mater. Sci. 26 248
[15] Kim H M, Miyaji F and Kokubo T 1997 J. Mater. Sci.: Mater. Med. 8 341
[16] Tsai C C and Teng H 2006 Chem. Mater. 18 367
[17]Sasaki T, Watanbe M, Hashizume H, Yamada H and Nakazawa H 1996 J. Am. Chem. Soc. 118 8329
[18] Tkach A, Vilarinho P M, Kholkin A L, Pashkin A, Samoukhina P, Pokorny J, Veljko S and Petzelt J 2005 J. Appl. Phys. 97 044104
[19] Zhang F X, Manoun B, Saxena S K and Zha C S 2005 Appl. Phys. Lett. 86 181906
[20] Hearne G R, Zhao J, Dawe A M, Pischedda V, Maaza M, Nieuwoudt M K, Kibasomba P, Nemraoui O, Comins J D and Witcomb M J 2004 Phys. Rev. B 70 134102
[21] Swamy V, Kuznetsov A, Dubrovinsky L S, Caruso R A, Shchukin D G and Muddle B C 2005 Phys. Rev. B 71 184302
[22] Yang J, Zhang J S, Wu X F and Gong Q H 2009 Chin. Phys. Lett. 26 067802
[23] Peter A J and Lakshminarayana V 2008 Chin. Phys. Lett. 25 3021
[24] Zhao D, Song Y H and Wang Y N 2008 Chin. Phys. Lett. 25 2588
[25] Zhou L, Yu X F, Fu X F, Hao Z H and Li K Y 2008 Chin. Phys. Lett. 25 1776
Related articles from Frontiers Journals
[1] ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy[J]. Chin. Phys. Lett., 2012, 29(5): 026103
[2] LIN Sheng-Xiong, LIU Xiu-Ru**, SHAO Chun-Guang, SHEN Ru, HONG Shi-Ming . Effect of Iodine Additive on Thermostability of Bulk Amorphous Sulfur Prepared by Rapid Compression[J]. Chin. Phys. Lett., 2011, 28(8): 026103
[3] PAN Rui-Qin. Diameter and Temperature Dependence of Thermal Conductivity of Single-Walled Carbon Nanotubes[J]. Chin. Phys. Lett., 2011, 28(6): 026103
[4] ZHANG Xiao-Fei, ZHANG Chu-Hang, LV Neng, XIE Jian-Ping, YE Gao-Xiang,. Condensation Behavior of Ag Aggregates on Liquid Surfaces[J]. Chin. Phys. Lett., 2010, 27(9): 026103
[5] YUAN Chao-Sheng, LIU Xiu-Ru, SHEN Ru, SUN Zhen-Ya, CHEN Bo, LV Shi-Jie, HE Zhu, HU Yun, HONG Shi-Ming. Preparation of Thermo-Stable Bulk Metallic Glass of Nd60Cu20Ni10Al10 by Rapid Compression[J]. Chin. Phys. Lett., 2010, 27(9): 026103
[6] LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen, LIU Xiang-Dong, XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption[J]. Chin. Phys. Lett., 2010, 27(9): 026103
[7] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 026103
[8] TANG Ling-Yun, LIU Lei, LIU Jing, XIAO Wan-Sheng, LI Yan-Chun, LI Xiao-Dong, BI Yan. Equation of State of Tantalum up to 133GPa[J]. Chin. Phys. Lett., 2010, 27(1): 026103
[9] LI Gong, DONG Yan-Guo, HUANG Lei, HE Guo-Wei, LIU Ri-Ping, WANGWen-Kui. High-Pressure Annealing Effect on Glass Transformation Temperature of Zr41Ti14Cu12.5Ni10Be22.5 Bulk Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(8): 026103
[10] YAN Zheng-Xin, DENG Jun, WANF Ya-Min, LIU Wei. Comparative Study of Activity of Different Agings of Aluminum Nanopowders[J]. Chin. Phys. Lett., 2009, 26(8): 026103
[11] GU Yun-Jun, CHEN Qi-Feng, CAI Ling-Cang, CHEN Zhi-Yun, ZHENG Jun. Temperature Measurements of Condensed Gaseous Hydrogen-Helium Mixtures under Multi-Shock Compression[J]. Chin. Phys. Lett., 2009, 26(8): 026103
[12] ZHANG Yang, YU Da-Peng. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures[J]. Chin. Phys. Lett., 2009, 26(8): 026103
[13] LI Yan-Rong, LIU Hai-Qing, LIU Ying, SU Shao-Kui, WANG Yun-Ping. Magnetic Relaxation Study on Single Crystals of Ni4 Single-Molecule Magnets[J]. Chin. Phys. Lett., 2009, 26(7): 026103
[14] JIANG Sheng, BAI Li-Gang, LIU Jing, XIAO Wan-Sheng, LI Xiao-Dong, LI Yan-Chun, TANG Ling-Yun, ZHANG Yu-Feng, ZHANG De-Chun, ZHENG Li-Rong. The Phase Transition of Eu2O3 under High Pressures[J]. Chin. Phys. Lett., 2009, 26(7): 026103
[15] LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang. Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature[J]. Chin. Phys. Lett., 2009, 26(5): 026103
Viewed
Full text


Abstract