Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 026104    DOI: 10.1088/0256-307X/27/2/026104
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Mechanical Behavior of Nanometer Ni by Simulating Nanoindentation
TANG Qi-Heng1,2, YANG Tian-Yong1, DING Lan3
1State Key Laboratory of Nonliear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 1001902State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 1000803The School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article:   
TANG Qi-Heng, YANG Tian-Yong, DING Lan 2010 Chin. Phys. Lett. 27 026104
Download: PDF(665KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An indentation simulation of the crystal Ni is carried out by a molecular dynamics technique (MD) to study the mechanical behavior at nanometer scales. Indenter tips with both sphere shape and conical shape with 60° cone angle are used, and simulation samples with different crystal orientations are adopted. Some defects such as dislocations and point defects are observed. It is found that nucleated defects (dislocations, amorphous atoms) are from the local region near the pin tip or the sample surface. The temperature distribution of the local region is analyzed and it can explain our MD simulation results.
Keywords: 61.72.Hh      64.70.Kg     
Received: 09 September 2009      Published: 08 February 2010
PACS:  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  64.70.kg (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/026104       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/026104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Qi-Heng
YANG Tian-Yong
DING Lan
[1] Li X D, Gao H S, Murphy C J and Caswell K 2003 Nano Lett. 3 1495
[2] Li X D, Wang N and Xiong Q H 2005 Nano Lett. 5 1982
[3] da Silva E Z, da Silva A J R and Fazzio A 2001 Phys. Rev. Lett. 87 256102
[4] Mehrez H, Ciraci S, Fong C Y and Erkoc S 1997 J. Phys. D 9 10843
[5] Wang D, Zhao J, Hu S, Yin X, Liu Y H and Deng S Y 2007 Nano Lett. 7 1208
[6] Mehrez H and Ciraci S 1997 Phys. Rev. B 56 12632
[7] Horstemeyer M F and Baskes M I 1999 J. Eng. Mater. Technol. 121 114
[8] Kim Y S, Yang S H, Kim C I and Lee S S 2003 Mater. Sci. Forum 426--432 2243
[9] Fang T H, Weng C T and Chang J G 2002 Surf. Sci. 501 138
[10] Voter A F, Chen S P 1987 Mat. Res. Symp. 82 175
[11] Jang H Y, Seong J K, Kim J and Jang H 2004 Mater. Sci. Forum 449-452 89
[12] Tang Q H 2004 Mol. Phys. 102 1959
[13] Tang Q H 2008 Chin. Phys. Lett. 25 2946
[14] Allen M P and Tildesley D J 2000 Computer Simulation of Liquid (New York: Oxford University) p 340
[15] Kim Y S, Choi S O, Lee S R and Kim J 2003 IUTAM Sym. Mesoscopic Dynamics of Fracture Process and Materials Strength (Osaka, Japan 6--11 July 2003)
[16] Honeycutt J D and Anderson H C 1987 J. Phys. Chem. 91 4950
[17] Greer J R and Nix W D 2005 Appl. Phys. A 80 1625
[18] Kiener D, Grosinger W, Dehm G and Pippan R 2008 Acta Mater. 56 580
[19] Koh S J A and Lee H P 2006 Nanotechnology 17 3451
[20] Carrasco E, Fuente O R, Gonzalez M A and Rojo J M 2003 Phys. Rev. B 68 180102
[21] Minor A M and Morris J W 2001 Appl. Phys. Lett. 79 1625
[22] Tang Q H and Chen F H 2006 J. Phys D. Appl. Phys. 39 3674
[23] Chen R L, Luo J B, Guo D and Lu X 2008 J. Appl. Phys. 104 104907
[24] Rice J R and Beltz G E 1994 J. Mech. Phys. Solids 42 333
[25] Merers M A and Chawla K K 1983 Mech. Metall. (Prentice: Prentice Hall Inc.)
[26] Zhu T, Li J, Samanta A, Leach A and Gall K 2008 Phys. Rev. Lett. 100 025502
Related articles from Frontiers Journals
[1] LU Guang-Duo, ZHANG Huai-Wu, TANG Xiao-Li, ZHONG Zhi-Yong, PENG Long. Theoretical Investigations on the Off-Center Displacement of Co2+ in SrO by Analyzing Its Anisotropic g Factors[J]. Chin. Phys. Lett., 2009, 26(8): 026104
[2] CHEN Wei-Hua, HU Xiao-Dong, SHAN Xu-Dong, KANG Xiang-Ning, ZHOU Xu-Rong, ZHANG Xiao-Min, YU Tong-Jun, YANG Zhi-Jian, YOU Li-Ping, XUKe, ZHANG Guo-Yi. Shock-Assisted Superficial Hexagonal-to-Cubic Phase Transition in GaN/Sapphire Interface Induced by Using Ultra-violet Laser Lift-Off Techniques[J]. Chin. Phys. Lett., 2009, 26(1): 026104
[3] TANG Qi-Heng. Molecular Dynamics Study of Mechanical Behaviour of Screw Dislocation during Cutting with Diamond Tip on Silicon[J]. Chin. Phys. Lett., 2008, 25(8): 026104
[4] LI Ping-Yun, ZHANG Xi-Yan, WU Xiao-Lei, HUANG Yi-Neng, MENG Xiang-Kang. Internal Friction of Bend-Deformed Nanocrystalline Nickel by Mechanical Spectroscopy[J]. Chin. Phys. Lett., 2008, 25(12): 026104
[5] O. Sahin, N. Ucar. Creep Behaviour of Fe--Mn Binary Alloys[J]. Chin. Phys. Lett., 2006, 23(11): 026104
[6] YIN Long-Wei, LI Mu-Sen, YUAN Quan, XU Bin, HAO Zhao-Yin. Characterization of Growth Hillocks on the Surface of High-Pressure Synthetic Diamonds[J]. Chin. Phys. Lett., 2002, 19(11): 026104
[7] RUAN Yong-Feng, Hiroshi NAKAO, Takatomo SASAKI. BO2-F+ Centers in the Radiation-damaged YCOB Crystals[J]. Chin. Phys. Lett., 2000, 17(12): 026104
[8] LIU Chang-Song, ZHU Zhen-Gang, XIA Jun-Chao, SUN De-Yan. Different Cooling Rate Dependences of Different Microstructure Units in Aluminium Glass by Molecular Dynamics Simulation [J]. Chin. Phys. Lett., 2000, 17(1): 026104
[9] HAN Fu-sheng, ZHU Zhen-gang, WANG Shan-ying, LIU Chang-song. Nonlinear Internal Friction Character of Foamed Aluminum[J]. Chin. Phys. Lett., 1998, 15(1): 026104
Viewed
Full text


Abstract