Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030504    DOI: 10.1088/0256-307X/27/3/030504
GENERAL |
Synchronization of Coupled Nonidentical Dynamical Systems

ZHANG Gang1,2, ZHANG Wei1, LIU Zeng-Rong3

1College of Mechanical Engineering, Beijing University of Technology, Beijing 100124 2Department of Mathematics, Shijiazhuang College, Shijiazhuang 050035 3Institute of System Biology, Shanghai University, Shanghai 200444
Cite this article:   
ZHANG Gang, ZHANG Wei, LIU Zeng-Rong 2010 Chin. Phys. Lett. 27 030504
Download: PDF(612KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Synchronization behavior of coupled dynamical systems is discussed. An equivalence relation is found between the diffeomorphic generalized synchronization and the complete synchronization of coupled nonidentical systems. Employing the method of the complete synchronization, the problem of the generalized synchronization can be unraveled. By constructing an appropriate coupling term, a sufficient condition is obtained for determining the complete synchronization of coupled nonidentical systems. Numerical simulations are also given to show the effectiveness of the proposed schemes.
Keywords: 05.45.Xt      05.45.Ac     
Received: 01 January 1900      Published: 09 March 2010
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Ac (Low-dimensional chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030504       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Gang
ZHANG Wei
LIU Zeng-Rong
[1] Brown R and Kocarev L 2000 Chaos 10 344
[2] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[3] Yang L Z et al 2008 Chin. Phys. Lett. 25 3883
[4] Wang J et al 2009 Chin. Phys. Lett. 26 050503
[5] Sun X J and LU Q S 2009 Chin. Phys. Lett. 26 060507
[6] Duan Z S, Wang J Z and Huang L 2005 IEEE Transactions on Circuits and Systems-I: Regular papers 52 567
[7] Duan Z S et al 2008 Automatica 44 1028
[8] Chen S H and L\"{u J H 2002 Phys. Lett. A 299 353
[9] Liu Z R and Luo J G 2006 Chin. Phys. Lett. 23 1118
[10] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[11] Zheng Z G, Hu G and Hu B B 1998 Phys. Rev. Lett. 81 5318
[12] Yu W W and Cao J D 2007 Phys. A 375 467
[13] Zhou J, Chen T and Xiang L 2006 Int. J. Bifur. Chaos 16 2923
[14] Kocarev L and Partlitz U 1996 Phys. Rev. Lett. 76 1816
[15] Gonz\'{alez-Miranda J M 2002 Phys. Rev. E 65 047202
[16] Boccaletti S et al 2002 Phys. Rep. 366 1
[17] Liu Z R 2004 Ziran Zazhi 26 298 (in Chinese)
[18] Zhang G, Liu Z R and Ma Z 2007 Appl. Math. Mech. 28 157
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 030504
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030504
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030504
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 030504
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 030504
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030504
[7] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 030504
[8] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 030504
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 030504
[10] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 030504
[11] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 030504
[12] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 030504
[13] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 030504
[14] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 030504
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 030504
Viewed
Full text


Abstract