Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 040501    DOI: 10.1088/0256-307X/27/4/040501
GENERAL |
Bifurcation Analysis of the Full Velocity Difference Model

JIN Yan-Fei1, XU Meng2

1Department of Mechanics, Beijing Institute of Technology,Beijing 1000812School of Traffic and Transportation, Beijing Jiaotong University,Beijing 100044
Cite this article:   
JIN Yan-Fei, XU Meng 2010 Chin. Phys. Lett. 27 040501
Download: PDF(326KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bifurcation is investigated with the full velocity difference traffic model. Applying the Hopf theorem, an analytical Hopf bifurcation calculation is performed and the critical road length is determined for arbitrary numbers of vehicles. It is found that the Hopf bifurcation critical points locate on the boundary of the linear instability region. Crossing the boundary, the uniform traffic flow loses linear stability via Hopf bifurcation and the oscillations appear.

Keywords: 05.45.-a      89.40.-a     
Received: 03 September 2009      Published: 27 March 2010
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  89.40.-a (Transportation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/040501       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/040501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Yan-Fei
XU Meng
[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Kerner B S and Rehborn H 1995 Phys. Rev. E 53 R1297
[3] Helbing D 2001 Rev. Mod. Phys. 73 1067
[4] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[5] Wu J J, Gao Z Y, Sun H J and Huang H J 2006 Europhys. Lett. 74 560
[6] Tang T Q, Huang H J, Xu X Y and Xue Y 2007 Chin. Phys. Lett. 24 1410
[7] Gao Z Y and Li K P 2005 Chin. Phys. Lett. 22 2711
[8] Xu M and Gao Z Y 2007 Chin. Phys. 16 1608
[9] Zhao B H, Hu M B, Jiang R and Wu Q S 2009 Chin. Phys. Lett. 26 118902
[10] Yang T, Cui Y D, Jin Y H and Cheng S D 2009 Chin. Phys. Lett. 26 120502
[11] Kerner B S 1999 Physics World 12 25
[12] Nagatani T 1999 Phys. Rev. E 60 6395
[13] Ge H X, Dai S Q, Dong L Y and Xue Y 2004 Phys. Rev. E 70 066134
[14] Igarashi Y, Itoh K, Nakanishi K, Ogura K and Yokokawa K 2001 Phys. Rev. E 64 047102
[15] Gasser I, Sirito G and Werner B 2004 Physica D 197 222
[16] Orosz G, Wilson R E and Krauskopf B 2004 Phys. Rev. E 70 026207
[17] Orosz G, Krauskopf B and Wilson R E 2005 Physica D 211 277
[18] Orosz G and Stepan G 2006 Proc. R. Soc. A 462 2643
[19] Newell G F 1961 Oper. Res. 9 209
[20] Whitham B G 1990 Proc. R. Soc. A 428 49
[21] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[22] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[23] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[24] Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (New York: Springer)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[3] GUO Ren-Yong, WONG S. C., XIA Yin-Hua, HUANG Hai-Jun, LAM William H. K., CHOI Keechoo. Empirical Evidence for the Look-Ahead Behavior of Pedestrians in Bi-directional Flows[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 040501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 040501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 040501
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 040501
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 040501
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 040501
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 040501
[15] Zarita Zainuddin, Lim Eng Aik**. Intelligent Exit-Selection Behaviors during a Room Evacuation[J]. Chin. Phys. Lett., 2012, 29(1): 040501
Viewed
Full text


Abstract