Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 040502    DOI: 10.1088/0256-307X/27/4/040502
GENERAL |
Statistical Interaction Term of One-Dimensional Anyon Models

ZHU Ren-Gui1, WANG An-Min2

1College of Physics and Electronic Information, Anhui NormalUniversity, Wuhu 2410002Department of Modern Physics, University of Science and Technology ofChina, Hefei 230026
Cite this article:   
ZHU Ren-Gui, WANG An-Min 2010 Chin. Phys. Lett. 27 040502
Download: PDF(275KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A form of statistical interaction term of one-dimensional anyons is introduced, based on which one-dimensional anyon models are theoretically realized, and the statistical transmutation between bosons (or fermions) and anyons is established in quantum mechanics formalism. Two kinds of anyon models which are being studied are recovered and reexplained naturally in our formalism.

Keywords: 05.30.-d      05.30.Pr     
Received: 12 October 2009      Published: 27 March 2010
PACS:  05.30.-d (Quantum statistical mechanics)  
  05.30.Pr (Fractional statistics systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/040502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/040502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Ren-Gui
WANG An-Min
[1] Leinaas J M and Myrheim J 1977 Nuovo Cimento B 37 1
[2] Wilczek F 1982 Phys. Rev. Lett. 48 1144
Wilczek F 1982 Phys. Rev. Lett. 49 {957}
[3] Haldane F D M 1991 Phys. Rev. Lett. 67 937
[4] Nayak C, Simon S H, Sterm A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083 and references therein
[5] Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W and Bloch I 2004 Nature 429 277
[6] Kinoshita T, Wenger T and Weiss D S 2004 Science 305 1125
[7] Hao Y J, Zhang Y B and Chen S 2009 Phys. Rev. A 79 043633
Hao Y J, Zhang Y B and Chen S 2008 Phys. Rev. A 78 {023631}
[8] Campo A D 2008 Phys. Rev. A 78 045602
[9] Batchelor M T, Guan X W and Oelkers N 2006 Phys. Rev. Lett. 96 210402
Batchelor M T and Guan X W 2006 Phys. Rev. B 74 {195121}
Batchelor M T, Guan X W and He J S 2007 J. Stat. Mech. P{03007}
Batchelor M T, Guan X W and Kundu A 2008 J. Phys. A 41{352002}
[10] Girardeau M D 2006 Phys. Rev. Lett. 97 100402
[11] Calabrese P and Mintchev M 2007 Phys. Rev. B 75 233104
[12] Pâtu O I, Korepin V E and Averin D V 2007 J. Phys. A 40 14963
Pâtu O I, Korepin V E and Averin D V 2008 J. Phys. A 41 {145006}
Pâtu O I, Korepin V E and Averin D V 2008 J. Phys. A 41 {255205}
[13] Santachiara R and Calabrese P 2008 J. Stat. Mech. P06005
[14] Zhu R G and Wang A M 2008 Commun. Theor. Phys. 50 1265
[15] Kundu A 1999 Phys. Rev. Lett. 83 1275
[16] Wu Y S 1984 Phys. Rev. Lett. 52 2103
[17] Khare A 2005 \emph{Fractional Statistics and Quantum Theory} (Singapore: World Scientific)
[18] Lieb E H and Liniger W 1963 Phys. Rev. 130 1605
[19] Girardeau M 1960 J. Math. Phys. 1 516
[20] Rabello S J B 1996 Phys. Rev. Lett. 76 4007
Rabello S J B 1996 Phys. Rev. Lett. 77
Related articles from Frontiers Journals
[1] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 040502
[2] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 040502
[3] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 040502
[4] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 040502
[5] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 040502
[6] WANG Chun-Yang, BAO Jing-Dong. The Third Law of Quantum Thermodynamics in the Presence of Anomalous Couplings[J]. Chin. Phys. Lett., 2008, 25(2): 040502
[7] ZHU Jing-Min. Quantum Phase Transitions in Matrix Product States[J]. Chin. Phys. Lett., 2008, 25(10): 040502
[8] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space[J]. Chin. Phys. Lett., 2008, 25(10): 040502
[9] ZHU Kun-Yan, TAN Lei, GAO Xiang, WANG Daw-Wei. Quantum Fluids of Self-Assembled Chains of Polar Molecules at Finite Temperature[J]. Chin. Phys. Lett., 2008, 25(1): 040502
[10] ZHANG Qiu-Lan, GU Shi-Jian. Spin Transport Properties of the One-Dimensional Heisenberg Chain: Bethe-Ansatz Solution with Twist Boundary Conditions[J]. Chin. Phys. Lett., 2007, 24(5): 040502
[11] BI Qiao,. Fluctuation of Quantum Information Density in Curved Time--Space[J]. Chin. Phys. Lett., 2007, 24(4): 040502
[12] HENG Tai-Hua, LI Ping, JING Si-Cong. Modified Form of Wigner Functions for Non-Hamiltonian Systems[J]. Chin. Phys. Lett., 2007, 24(3): 040502
[13] FAN Hong-Yi, Li Hong-Qi. Physics of a Kind of Normally Ordered Gaussian Operators in Quantum Optics[J]. Chin. Phys. Lett., 2007, 24(12): 040502
[14] HUANG Xiao-Li, CHENG Li-Hong, YI Xue-Xi. Entanglement Distillation for Mixed States Using Particle Statistics[J]. Chin. Phys. Lett., 2006, 23(4): 040502
[15] BI Qiao, XING Xiu-San, H. E. Ruda. Dynamical Equations for Quantum Information and Application in Information Channel[J]. Chin. Phys. Lett., 2005, 22(7): 040502
Viewed
Full text


Abstract