Chin. Phys. Lett.  2010, Vol. 27 Issue (5): 057201    DOI: 10.1088/0256-307X/27/5/057201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms
LU Bao-Yang1, LIU Cong-Cong1, LU Shan2, XU Jing-Kun1, JIANG Feng-Xing1, LI Yu-Zhen1, ZHANG Zhuo3
1Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 2Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027 3BOE Technology Group Co. Ltd., Beijing 100016
Cite this article:   
LU Bao-Yang, LIU Cong-Cong, LU Shan et al  2010 Chin. Phys. Lett. 27 057201
Download: PDF(718KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thermoelectric performances of free-standing polythiophene (PT) and poly(3-methylthiophene) (PMeT) nanofilms with high tensile strength electrosynthesized from boron trifluoride diethyl etherate (BFEE) are systematically investigated. They display decent electric conductivity (47 and 73 S·cm-1), high Seebeck coefficient (130 and 76 μV·K-1) and low thermal conductivity (0.17 and 0.15 W·m-1·K-1) at room temperature. Their figure of merit can reach 3.0×10-2 at 250 K, higher than that of many other conducting polymers. The decrease of charge carrier concentration resulting from volatile and water-sensitive dopants from BFEE leads to the decrease of electrical conductivity but a substantial increase of the Seebeck coefficient, making their figure-of-merit values maintained at more than 10-2 even after prolonged storage (two months). Moreover, free-standing PT and PMeT exhibit much better thermoelectric performances than those in pressed pellets due to the good arrangement of the polymer chains and preferably oriented structure in films. It therefore provides a way to improve the thermoelectric performances of conducting polymers by controlling regularity of the extended conjugated chain structure and/or the chain packing to achieve high charge mobility.

Keywords: 72.20.Pa      72.80.Le      73.50.Lw     
Received: 02 December 2009      Published: 23 April 2010
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  73.50.Lw (Thermoelectric effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/5/057201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I5/057201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Bao-Yang
LIU Cong-Cong
LU Shan
XU Jing-Kun
JIANG Feng-Xing
LI Yu-Zhen
ZHANG Zhuo
[1] Rowe D M 1995 CRC Handbook of Thermoelectric (Florida: CRC)
[2] Shakouri A and Li S Q 1999 Proceedings of 18 th International Conference on Thermoelectrics} (Baltimore, USA 29 August-2 September 1999) p 402
[3] Skotheim T A 1986 Handbook of Conducting Polymers (New York: Marcel Dekker)
[4] Roncali J 1992 Chem. Rev. 92 711
[5] Lu B Y, Xu J K, Fan C L, Miao H M and Shen L 2009 J. Phys. Chem. B 113 37
[6] Ma M L, Liu H T, Xu J K, Li Y Z and Wan Y Q 2007 J. Phys. Chem. C 111 6889
[7] Yakuphanoglu F, Liu H T and Xu J K 2007 J. Phys. Chem. B 111 7535
[8] Kemp N T, Kaiser A B, Liu C J et al 1999 J. Polym. Sci. Part B: Polym. Phys. 37 953
[9] Yakuphanoglu F and Senkal B F 2007 J. Phys. Chem. C 111 1840
[10] Jin S Cong S, Xue G, Xiong H, Mansdorf B and Cheng S Z D 2002 Adv. Mater. 14 1492
[11] Carrasco P M, Cortazar M, Ochoteco E, Calahorra E and Pomposo J A 2007 Surf. Interface Anal. 39 26
[12] Lévesque I, Gao X, Klug D D, Tse J S, Ratcliffe C I and Leclerc M 2005 React. Funct. Polym. 65 23
[13] Lévesque I, Bertrand P O, Blouin N, Leclerc M et al 2007 Chem. Mater. 19 2128
[14] Jiang F X, Xu J K, Lu B Y, Xie Y, Huang R J and Li L F 2008 Chin. Phys. Lett. 25 2202
[15] Shinohara Y, Hiraishi K, Nakanishi H, Isoda Y and Imai Y 2005 Trans. Mater. Res. Soc. Jpn. 30 963
[16] Shi G Q, Jin S, Xue G and Li C 1995 Science 267 994
[17] Zhou L, Jin S and Xue G 1996 Macromol. Chem. Phys. 197 3309
[18] Hiroshige Y, Ookawa M and Toshima N 2007 Synth. Met. 157 467
Related articles from Frontiers Journals
[1] WANG Li-Guo**, ZHANG Huai-Wu, TANG Xiao-Li, LI Yuan-Xun, ZHONG Zhi-Yong. Charge Transport and Electrical Properties in Poly(3-hexylthiophene) Polymer Layers[J]. Chin. Phys. Lett., 2012, 29(1): 057201
[2] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 057201
[3] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 057201
[4] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 057201
[5] JIANG Chun-Xia, YANG Xiao-Yan, ZHAO Kai, WU Xiao-Ming, YANG Li-Ying, CHENG Xiao-Man, WEI Jun, YIN Shou-Gen, ** . High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)[J]. Chin. Phys. Lett., 2011, 28(11): 057201
[6] LIANG Chun-Jun, ZOU Hui, HE Zhi-Qun, ZHANG Chun-Xiu, LI Dan, WANG Yong-Sheng. Polymer Light-Emitting Diode Using Conductive Polymer as the Anode Layer[J]. Chin. Phys. Lett., 2010, 27(9): 057201
[7] LI Rong-Hua, MENG Wei-Min, PENG Ying-Quan, MA Chao-Zhu, WANG Run-Sheng, XIE Hong-Wei, WANG Ying. Numerical Study on Open-Circuit Voltage of Single Layer Organic Solar Cells with Schottky Contacts: Effects of Molecular Energy Levels, Temperature and Thickness[J]. Chin. Phys. Lett., 2010, 27(8): 057201
[8] QIAO Xian-Feng, CHEN Jiang-Shan, MA Dong-Ge. Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine[J]. Chin. Phys. Lett., 2010, 27(8): 057201
[9] XU Yue, YAN Feng, CHEN Dun-Jun, SHI Yi, WANG Yong-Gang, LI Zhi-Guo, YANG Fan, WANG Jos-Hua, LIN Peter, CHANG Jian-Guang. Improved Programming Efficiency through Additional Boron Implantation at the Active Area Edge in 90nm Localized Charge-Trapping Non-volatile Memory[J]. Chin. Phys. Lett., 2010, 27(6): 057201
[10] LI Zhong-Liang, WU Zhao-Xin, JIAO Bo, MAO Gui-Lin, HOU Xun. Capacitance of Organic Schottky Diodes Based on Copper Phthalocyanine (CuPc)[J]. Chin. Phys. Lett., 2010, 27(6): 057201
[11] Jaya Lohani, Manoj Gaur, Upendra Kumar, V. R. Balakrishnan, Harsh, S. V. Eswaran. Electrical Studies on Pentacene Thin Film Transistors with Different Channel Widths[J]. Chin. Phys. Lett., 2010, 27(4): 057201
[12] ZHANG Li-Li, HU Chun-Lian, WANG Can, LÜ, Hui-Bin, HAN Peng, YANG Guo-Zhen, JIN Kui-Juan. Competition between Radiative Power and Dissipation Power in the Refrigeration Process in Oxide Multifilms[J]. Chin. Phys. Lett., 2010, 27(2): 057201
[13] YU Hai-Ming, S. Granville, YU Da-Peng, J-Ph. Ansermet. Second Harmonic Detection of Spin-Dependent Transport in Magnetic Nanostructures[J]. Chin. Phys. Lett., 2010, 27(2): 057201
[14] CHENG Cui-Ran, CHEN Yu-Huan, QIN Da-Shan**, QUAN Wei, LIU Jin-Suo. Inverted Bottom-Emission Organic Light Emitting Diode Using Two n-Doped Layers for the Enhanced Performance[J]. Chin. Phys. Lett., 2010, 27(11): 057201
[15] WANG Wei, , MA Dong-Ge. Nonvolatile Memory Effect in Organic Thin-Film Transistor Based on Aluminum Nanoparticle Floating Gate[J]. Chin. Phys. Lett., 2010, 27(1): 057201
Viewed
Full text


Abstract