Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3507-3510    DOI:
Original Articles |
Order Parameter Hysteresis on the Complex Network
MA Pei-Jie, WANG Bing-Hong
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
MA Pei-Jie, WANG Bing-Hong 2008 Chin. Phys. Lett. 25 3507-3510
Download: PDF(125KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Collective synchronization is investigated on the small-world network (NW model). The order parameter is introduced to measure the synchronization of phase. It is found that there are differences between the processes of synchronization and desynchronization. The dependence of order parameter on the coupling strength is shown like a hysteresis loop. The size of the loop demonstrates the non-monotonicity with the change of adding probability, and is relevant to the construction of the network. The area may be maximum, as the adding probability is equal to 0.4. This phenomenon indicates that the clusters in the network play an important role in the processes of synchronization and desynchronization
Keywords: 89.75.Hc      05.45.Xt     
Received: 26 May 2008      Published: 29 August 2008
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Pei-Jie
WANG Bing-Hong
[1] Heagy J F, Carroll T L and Pecora L M 1994 Phys.Rev. E 50 1874
[2] Wu C W and Chua L O 1995 IEEE Trans. Circuits Syst.I 42 430.
[3] Albert R and Barab\'{asi A L 2002 Rev. Mod. Phys. 74 47
[4 Dorogovtsev S N and Mendes J F F 2002 Adv. Phys. 51 1079
[5] Newman M E J 2003 SIAM Rev. 45 167
[6] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U2006 Phys. Rep. 424 175
[7] Gade P M and Hu C K 2002 Phys. Rev. E 62 6409
[8] Hasegawa H 2004 Phys. Rev. E 70 066107
[9] Nishikawa T, Motter A E, Lai Y C and Hoppensteadt F C2003 Phys. Rev. Lett. 91 014101
[10] Zhao M, Zhou T, Wang B H and Wang W X 2005 Phys.Rev. E 72 057102
[11] McGraw P N and Menzinger M 2005 Phys. Rev. E 72 015101(R)
[12] Chavez M, Hwang D U, Amann A, Hentschel H G E andBoccaletti S 2005 Phys. Rev. Lett. 94 218701
[13] Chavez M, Hwang D U, Amann A and Boccaletti S 2006 Chaos 16 015106
[14 Zhao M, Zhou T, Wang B H, Ou Q and Ren J 2006 Eur.Phys. J. B 53 (2006) 375
[15] Hong H, Choi M Y and Kim B J 2002 Phys. Rev. E 65 026139
[16] Watte D J and Strogatz S H 1998 Nature 393440
[17] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[18] Barahona M and Pecora L M, 2002 Phys. Rev. Lett. 89 054101
[19] Pecora L M and Barahona M 2005 Chaos ComplexityLett. 1 61
[20] Kuramoto Y 1984 Chemical Oscillations, Wave andTurbulence (Berlin: Springer)
[21] Pikovsky A 2001 Synchronization (Cambridge:Cambridge University Press)
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 3507-3510
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3507-3510
[3] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 3507-3510
[4] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 3507-3510
[5] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 3507-3510
[6] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 3507-3510
[7] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 3507-3510
[8] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 3507-3510
[9] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 3507-3510
[10] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 3507-3510
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 3507-3510
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3507-3510
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3507-3510
[14] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 3507-3510
[15] SUN Wei-Gang, , CAO Jian-Ting, WANG Ru-Bin** . Approach of Complex Networks for the Determination of Brain Death[J]. Chin. Phys. Lett., 2011, 28(6): 3507-3510
Viewed
Full text


Abstract