Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3111-3114    DOI:
Original Articles |
Eigenvalue Problems of non-Hermitian Systems via Improved Asymptotic Iteration Method
Okan Özer
Department of Engineering Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Turkey
Cite this article:   
Okan Ö, zer 2008 Chin. Phys. Lett. 25 3111-3114
Download: PDF(100KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We simply use the relation between the asymptotic iteration method and the Nikiforov--Uvarov method for the analytical solution of the second order linear ordinary differential equations. We apply this relation to study the Schrödinger equation with potentials admitting quasinormal modes. Non-Hermitian PT symmetric potentials have also been studied. Energy eigenvalues in all the cases by the relation are found to be consistent with exact results
Keywords: 03.65.Ge      03.65.-w     
Received: 21 April 2008      Published: 29 August 2008
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03111
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Okan Ö
zer
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 3111-3114
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 3111-3114
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3111-3114
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 3111-3114
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 3111-3114
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 3111-3114
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 3111-3114
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3111-3114
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 3111-3114
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 3111-3114
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 3111-3114
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 3111-3114
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 3111-3114
[14] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 3111-3114
[15] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 3111-3114
Viewed
Full text


Abstract