Original Articles |
|
|
|
|
Optoelectronic Properties for Armchair-Edge Graphene Nanoribbons |
PENG Xin-Xiang1, LIAO Wen-Hu1, ZHOU Guang-Hui 1,2 |
1Department of Physics, Hunan Normal University, Changsha 4100812International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015 |
|
Cite this article: |
PENG Xin-Xiang, LIAO Wen-Hu, ZHOU Guang-Hui 2008 Chin. Phys. Lett. 25 3436-3439 |
|
|
Abstract
We study theoretically the electronic and transport property for an armchair-edge graphene nanoribbon (GNR) with 12 and 11 transversal atomic lines, respectively. The GNR is irradiated under an external longitudinal polarized high-frequency electromagnetic field at low temperatures. Within the framework of linear response theory in the perturbative regime, we examine the joint density of states and the real conductance of the system. It is demonstrated that, by numerical examples, some new photon-assisted intersubband transitions over a certain range of field frequency exist with different selection rules from those of both zigzag-edge GNR and single-walled carbon nanotube. This opto-electron property dependence of armchair-edge GNR on field frequency may be used to detect the high-frequency electromagnetic irradiation.
|
Keywords:
78.40.Ri
78.67.-n
73.22.-f
|
|
Received: 13 June 2008
Published: 29 August 2008
|
|
PACS: |
78.40.Ri
|
(Fullerenes and related materials)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
|
|
|
[1] Tao N J 2006 Nature Nanotechnology 1 173 Avouris P, Chen Zand Perebeinos V 2007 Nature Nanotechnol. 2 605 [2]Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954 [3]Brey L and Fertig H A 2006 Phys. Rev. B 73195408; Brey L and Fertig H A 2006 Phys. Rev. B 73 235411 [4]Yang L, Park C H, Son Y W, Cohen M L, and Louie S G 2007 Phys. Rev. Lett. 99 186801 [5]Zheng H X, Wang Z F, Shi Q W and Chen J 2007 Phys.Rev. B 75 165414 [6]Gunlycke D and White C T 2008 Phys. Rev. B 77115116 [7]Chen Y P, Xie Y E and Yan X H 2008 J. Appl. Phys.103 063711 [8]Rojas F M, Jacob D, Rossier J F and Palacios J J 2006 Phys. Rev. B 74 195417 [9]Novikov D S 2007 Phys. Rev. Lett. 99 056802 [10]Zhai F and Chang K 2008 Phys. Rev. B 77 113409 [11]Guo G Y, Chu K C, Wang D S and Duan C G 2004 Phys.Rev. B 69 205416 [12]Lin M F and Shung Kenneth W K 1994 Phys. Rev. B50 17744 [13]Liao W H, Zhou G H and Ding K H 2008 J. Appl. Phys.103 073712 Orellana P A and Pacheco M 2007 Phys. Rev. B 75115427 [14]Jiang L J, Liao W H, and Zhou G H 2008 Chin. Phys.Lett. 25 1836 [15]Gusynin V P and Sharapov S G 2006 Phys. Rev. B73 245411 Gusynin V P, Sharapov S G and Carbotte J P 2006 Phys.Rev. Lett. 96 256802 [16]Trauzettel B, Blanter Y M and Morpurgo A F 2007 Phys.Rev. B 75 035305 [17]Zhang C, Chen L and Ma Z S 2008 Phys. Rev. B 77 241402(R) [18]Abergel D S L and Fal'ko V I 2007 Phys. Rev. B 75 155430 [19]Nicol E J and Carbotte J P 2008 Phys. Rev. B 77 155409 [20]Yamamoto T, Noguchi T and Watanabe K 2006 Phys. Rev.B 74 121409(R) [21]Yang L, Cohen M L and Louie S G 2007 Nano. Lett. 7 3112 [22]Hsu Has and Reichl L E 2007 Phys. Rev. B 76045418 [23]Prezzi D, Varsano D, Ruini A, Marini A and Molinari E 2008 Phys. Rev. B 77 041404(R) [24]Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|