Original Articles |
|
|
|
|
Ultrahigh-Pressure Equation of State for Copper at 0K |
WANG Xiao-Lu1, GAO Xiang1, MA Gui-Cun2, YAN Jun2, ZHANG Wen-Qing3, LI Jia-Ming 1,4 |
1Department of Physics, Shanghai Key Laboratory for Laser Fabrication and Material Science, Shanghai Jiaotong University, Shanghai 2002402Institute of Applied Physics and Computational Mathematics, Beijing 1000883State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 2000504The Key Laboratory of Atomic and Molecular Nanosciences of the Ministry of Education, Department of Physics, Tsinghua University, Beijing 100084 |
|
Cite this article: |
WANG Xiao-Lu, GAO Xiang, MA Gui-Cun et al 2008 Chin. Phys. Lett. 25 3350-3352 |
|
|
Abstract
Based on the first-principles all-electron full-potential augmented-plane-wave plus local orbital method, an equation of state (EOS) at 0K for copper up to 10000GPa (108bar) is presented. Our recommended EOS is in good agreement with the available experimental data. Furthermore, the agreement between theoretical EOS of hcp and fcc lattices at extremely compressed condition sets the foundation of spherical atom models for high density and high temperate plasmas.
|
Keywords:
64.30.+t
64.10.+h
71.15.Mb
|
|
Received: 22 February 2008
Published: 29 August 2008
|
|
PACS: |
64.30.+t
|
|
|
64.10.+h
|
(General theory of equations of state and phase equilibria)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
|
|
[1] Wiringa R B et al 1988 Phys. Rev. C 38 1010 [2] Akmal A et al 1998 Phys. Rev. C 58 1804 [3] Singh D J 1994 Plane Waves Pseudopotentials and theLAPW Method (Dordrecht: Kluwer) [4] Murnaghan F D 1944 Proc. Natl. Acad. Sci. 30244 [5] Touloukia Y S, Kirby R K, Taylor R E et al 1977 Thermophysical Properties of Matter, Thermal Expansion---MetallicElements and Alloys (New York: IFI/Plenum) vol 12 [6] Rose J H et al 1984 Phys. Rev. B 29 2963 [7] Wang Y et al 2000 Phys. Rev. Lett. 84 3220 [8] Albers R C et al 1985 Phys. Rev. B 31 3435 [9] Mao H K et al 1978 J. Appl. Phys. 49 3276 [10] Dewaele A et al 2004 Phys. Rev. B 70 094112 [11] Nellis W J et al 1988 Phys. Rev. Lett. 601414 [12] Wang Y et al 2002 J. Appl. Phys. 92 6616 [13] Lee CM and Thorsos E I 1978 Phys. Rev. B 172073 [14] Skriver H L and Jan J P 1980 Phys. Rev. B 211489 [15] Blaha P et al 1990 Comput. Phys. Commun. 59399 [16] Petersen M et al 2000 Comput. Phys. Commun. 126 294 [17] Sj\"{ostedt E et al 2000 Solid State Commun. 114 15 [18] Blaha P et al 2001 WIEN2k: An Augmented Plane WavePlus Local Orbitals Program for Calculating Crystal Properties (Vienna, Austria: Vienna University of Technology) [19] Madsen G K H et al 2001 Phys. Rev. B 64195134 [20] Kunes J et al 2001 Phys. Rev. B 64 153102 [21] Schwarz K, Blaha P and Madsen G K H 2002 Comput.Phys. Commun. 147 71 [22] Schwarz K and Blaha P. 2003 Comput. Mater. Sci. 28 259 [23] Gao S 2003 Comput. Phys. Commun. 153 190 [24] Novak P www.wien2k.at/reg{\_user/textbooks/novak{\_lecture{\_on{\_spinorbit.ps [25] Kunes J, Novak P, Schmid R, Blaha P and Schwarz K 2001 Phys. Rev. B 64 153102 [26] Perdew J P 1991 Electronic Structure of Solids edZiesche P and Eschrig H (Berlin: Akademie) [27] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533 [28] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev.Lett. 77 3865 [29] Kresse G and Hafner J 1993 Phys. Rev. B 47558 [30] Kresse G and Furthm\"{uller J 1996 Phys. Rev. B 5411169 [31] Cottenier S 2002 Density Functional Theory and theFamily of (L)APW-Methods: A Step-by-Step Introduction (Leuven,Belgium: Instituut voor Kernen Stralingsfysica, K.U.) [33] Ma G C and Yan J private communication |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|