Chin. Phys. Lett.  2008, Vol. 25 Issue (9): 3181-3184    DOI:
Original Articles |
Conservation Laws for Partially Conservative Variable Mass Systems via d'Alembert's Principle
AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan
Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
Cite this article:   
AFTAB Ahmed, NASEER Ahmed, QUDRAT Khan 2008 Chin. Phys. Lett. 25 3181-3184
Download: PDF(90KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Conservation laws for partially conservative variable mass dynamical systems under symmetric infinitesimal transformations are determined. A generalization of Lagrange--d'Alembert's principle for a variable mass system in terms of asynchronous virtual variation is presented. The generalized Killing equations are obtained such that their solution yields the transformations and the associated conservation laws. An example illustrative of the theory is furnished at the end as well.
Keywords: 11.30.-j      45.20.Jj      03.20.+i      45.20.Df     
Received: 19 May 2008      Published: 29 August 2008
PACS:  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  03.20.+i  
  45.20.df (Momentum conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2008/V25/I9/03181
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
AFTAB Ahmed
NASEER Ahmed
QUDRAT Khan
[1] Luo S K 1994 Appl. Math. Mech. 15 147
[2] Fang J H and Zhao S Q 2002 Chin. Phys. 11445
[3] Qiao Y F, Li R J and Zhao S H 2004 Chin. Phys. 11 1790
[4] Li R J, Qiao Y F and Liu Y 2002 Chin. Phys. 11 760
[5] Mei F X 1999 Appl. Math. Mech. 20 629
[6] Noether A E 1918 Nachr. Akad. Wiss. Gottingen Math.Phys. K$\!$I \& I$\!$I 235
[7] Vujanovic B 1978 Int. J. Non-Linear Mech. 13185
[8] Munawar H 1991 Lagrange Equations of Motion(Islamabad: University Grants Commission) chap 2 p 37
[9] Pars L A 1968 A Treatise on Analytical Dynamics(London: Heinemann) chap 11 p 190
[10] Bahar L Y and Kwatny H G 1987 Int. J. Non-LinearMech. 22 125
[11] Liu D 1989 Acta Mech. Sin. 5 167
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 3181-3184
[2] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 3181-3184
[3] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 3181-3184
[4] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 3181-3184
[5] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 3181-3184
[6] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 3181-3184
[7] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 3181-3184
[8] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 3181-3184
[9] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 3181-3184
[10] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 3181-3184
[11] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 3181-3184
[12] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 3181-3184
[13] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 3181-3184
[14] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 3181-3184
[15] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 3181-3184
Viewed
Full text


Abstract