Chin. Phys. Lett.  2006, Vol. 23 Issue (5): 1355-1358    DOI:
Original Articles |
Detection of a Physical Difference between the CDM Halos in Simulation and in Nature
XIAO Wei-Ke1;PENG Chang1;YE Xian-Feng1;HAO Heng2
1Center for Astrophysics, University of Science and Technology of China, Hefei 230026 2Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA
Cite this article:   
XIAO Wei-Ke, PENG Chang, YE Xian-Feng et al  2006 Chin. Phys. Lett. 23 1355-1358
Download: PDF(244KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Numerical simulation is an important tool that is helpful for us to understand the process of structure formation in the universe. However, many simulation results of cold dark matter (CDM) halos on a small scale are inconsistent with observations: the central density profile is too cuspy and there are too many substructures. Here we point out that both the problems may be connected with a hitherto unrecognized bias in the simulated halos. Although CDM halos in nature and in simulation are both virialized systems of collisionless CDM particles, gravitational encounter cannot be neglected in the simulated halos because they contain many fewer particles. We demonstrate this by two numerical experiments, showing that there is a difference on the microcosmic scale between the natural and simulated halos. The simulated halo is more akin to globular clusters where gravitational encounter is known to lead to such drastic phenomena as core collapse. Such an artificial core collapse process appears to link the two problems together in the bottom-up scenario of structure formation in the ΛCDM universe. The discovery of this bias also has implications on the applicability of the Jeans theorem in galactic dynamics.
Keywords: 95.35.+d      98.80.-k      95.75.-z     
Published: 01 May 2006
PACS:  95.35.+d (Dark matter)  
  98.80.-k (Cosmology)  
  95.75.-z (Observation and data reduction techniques; computer modeling and simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I5/01355
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Wei-Ke
PENG Chang
YE Xian-Feng
HAO Heng
Related articles from Frontiers Journals
[1] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 1355-1358
[2] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 1355-1358
[3] Mubasher Jamil*, D. Momeni** . Evolution of the Brans–Dicke Parameter in Generalized Chameleon Cosmology[J]. Chin. Phys. Lett., 2011, 28(9): 1355-1358
[4] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 1355-1358
[5] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 1355-1358
[6] Hassan Amirhashchi, Anirudh Pradhan, **, Bijan Saha . An Interacting Two-Fluid Scenario for Dark Energy in an FRW Universe[J]. Chin. Phys. Lett., 2011, 28(3): 1355-1358
[7] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 1355-1358
[8] Abdussattar**, S. R. Prajapati** . Friedman–Robertson–Walker Models with Late-Time Acceleration[J]. Chin. Phys. Lett., 2011, 28(2): 1355-1358
[9] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 1355-1358
[10] QIN Hong-Yi**, WANG Wen-Yu, XIONG Zhao-Hua . A Simple Singlet Fermionic Dark-Matter Model Revisited[J]. Chin. Phys. Lett., 2011, 28(11): 1355-1358
[11] Ujjal Debnath . Modified Chaplygin Gas with Variable G and Λ[J]. Chin. Phys. Lett., 2011, 28(11): 1355-1358
[12] YANG Rong-Jia, QI Jing-Zhao, YANG Bao-Zhu . Restrictions on Purely Kinetic K-Essence[J]. Chin. Phys. Lett., 2011, 28(10): 1355-1358
[13] Koijam Manihar Singh*, Kangujam Priyokumar Singh** . Cosmic String Universes Embedded with Viscosity[J]. Chin. Phys. Lett., 2011, 28(10): 1355-1358
[14] Atul Tyagi, Keerti Sharma. Bianchi Type-V Magnetized String Cosmological Model with Variable Magnetic Permeability for Viscous Fluid distribution[J]. Chin. Phys. Lett., 2010, 27(8): 1355-1358
[15] Atul Tyagi, Keerti Sharma, Payal Jain. Bianchi Type-IX String Cosmological Models for Perfect Fluid Distribution in General Relativity[J]. Chin. Phys. Lett., 2010, 27(7): 1355-1358
Viewed
Full text


Abstract