Chin. Phys. Lett.  2006, Vol. 23 Issue (5): 1122-1123    DOI:
Original Articles |
Hydrogen Atom Spectrum in Noncommutative Phase Space
LI Kang1,3;CHAMOUN Nidal2,3
1Department of Physics, Hangzhou Teachers’ College, Hangzhou 310036 2Department of Physics, HIAST, PO Box 31983, Damascus, Syria 3The Abdus Salam ICTP, PO Box 586, 34100 Trieste, Italy
Cite this article:   
LI Kang, CHAMOUN Nidal 2006 Chin. Phys. Lett. 23 1122-1123
Download: PDF(179KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the energy levels of the hydrogen atom in the noncommutative phase space with simultaneous space--space and momentum--momentum noncommutative relations. We find new terms compared to the case that only noncommutative space--space relations are assumed. We also present some comments on a previous paper [Alavi S A hep-th/0501215].
Keywords: 11.10.Nx      03.65.-w     
Published: 01 May 2006
PACS:  11.10.Nx (Noncommutative field theory)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2006/V23/I5/01122
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Kang
CHAMOUN Nidal
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 1122-1123
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 1122-1123
[3] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 1122-1123
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1122-1123
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 1122-1123
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1122-1123
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 1122-1123
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 1122-1123
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 1122-1123
[10] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 1122-1123
[11] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 1122-1123
[12] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 1122-1123
[13] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 1122-1123
[14] RONG Shu-Jun**, LIU Qiu-Yu . Flavor State of the Neutrino: Conditions for a Consistent Definition[J]. Chin. Phys. Lett., 2011, 28(12): 1122-1123
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 1122-1123
Viewed
Full text


Abstract