Chin. Phys. Lett.  1994, Vol. 11 Issue (12): 721-723    DOI:
Original Articles |
Symmetries of the Variable Coefficient KdV Equation and Three Hierarchies of the Integrodifferential Variable Coefficient KdV Equation
ZHANG Jiefang1;HAN Ping2
1Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004 2Department of Physics, Zhoushan Teacher’s College, Zhoushan 316004
Cite this article:   
ZHANG Jiefang, HAN Ping 1994 Chin. Phys. Lett. 11 721-723
Download: PDF(124KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using a simple method to factorize the recursion operator, the inverse recursion operator of the variable coefficient KdV cquqtion is exhibited explicitly. Thee new sets of symmetries of the variable coefficient KdV equation arc given in addition to the known K symmetries and τ symmetries. Starting from these three sets of symmetries, we obtained three hierarchies of the variable coefficient KdV integro-differential equations.

Keywords: 02.20.+b      11.10.Lm      02.90.+p     
Published: 01 December 1994
PACS:  02.20.+b  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  02.90.+p (Other topics in mathematical methods in physics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1994/V11/I12/0721
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jiefang
HAN Ping
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 721-723
[2] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 721-723
[3] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 721-723
[4] SHI Chang-Guang, HIRAYAMA Minoru,. Exact Bosonic Solutions of the Truncated Skyrme Model[J]. Chin. Phys. Lett., 2010, 27(6): 721-723
[5] FAN Hong-Yi, REN Gang. Evolution of Number State to Density Operator of Binomial Distribution in the Amplitude Dissipative Channel[J]. Chin. Phys. Lett., 2010, 27(5): 721-723
[6] LV Cui-Hong, FAN Hong-Yi,. A New Kind of Integration Transformation in Phase Space Related to Two Mutually Conjugate Entangled-State Representations and Its Uses in Weyl Ordering of Operators[J]. Chin. Phys. Lett., 2010, 27(5): 721-723
[7] FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. Chin. Phys. Lett., 2010, 27(4): 721-723
[8] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 721-723
[9] LUO Lin, FAN En-Gui. Quasi-Hamiltonian Structure Associated with an Integrable Coupling System[J]. Chin. Phys. Lett., 2009, 26(5): 721-723
[10] GAO Yuan, TANG Xiao-Yan, LOU Sen-Yue,. Nonsensitive Nonlinear Homotopy Approach[J]. Chin. Phys. Lett., 2009, 26(11): 721-723
[11] SHI Chang-Guang. Geometric Property of the Faddeev Model[J]. Chin. Phys. Lett., 2008, 25(3): 721-723
[12] WANG Bin, LIU Yu-Xin. Radial Excitations in the Global Colour Soliton Model[J]. Chin. Phys. Lett., 2007, 24(8): 721-723
[13] LUO Lin, FAN En-Gui. A Hierarchy of Differential-Difference Equations and Their Integrable Couplings[J]. Chin. Phys. Lett., 2007, 24(6): 721-723
[14] KE San-Min, SHI Kang-Jie, WANG Chun, WU Sheng. Flat Currents and Solutions of Sigma Model on Supercoset Targets with Z2m Grading[J]. Chin. Phys. Lett., 2007, 24(12): 721-723
[15] LU Ran, WANG Qing. Equivalence of Different Descriptions for η Particle in Simplest Little Higgs Model[J]. Chin. Phys. Lett., 2007, 24(12): 721-723
Viewed
Full text


Abstract