Chin. Phys. Lett.  1993, Vol. 10 Issue (2): 68-70    DOI:
Original Articles |
On the Invalidity of a Conjecture of Dirac
LI Ziping
CCAST(Wor1d Laboratory), P. O. Box 8730, Beijing 100080 and Department of Applied Physics, Beijing Polytechnic University, Beijing 100022
Cite this article:   
LI Ziping 1993 Chin. Phys. Lett. 10 68-70
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Besed on the symmetry properties of constrained Hamiltonian system, we present one other example to show that Dirac’s conjecture fails in a different way than other examples in that there is no linearization of constraint in this problem. A clear discussion is made on the relationships of the coefficients connecting with the first-class constraints in the gauge generator for a constrained Hamiltonian system. The results of this counterexample are also in contradiction with the other conclusions.
Keywords: 03.20.+i      11.10.Ef      11.30.-j     
Published: 01 February 1993
PACS:  03.20.+i  
  11.10.Ef (Lagrangian and Hamiltonian approach)  
  11.30.-j (Symmetry and conservation laws)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y1993/V10/I2/068
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ziping
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 68-70
[2] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 68-70
[3] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 68-70
[4] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 68-70
[5] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 68-70
[6] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 68-70
[7] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 68-70
[8] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 68-70
[9] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 68-70
[10] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 68-70
[11] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 68-70
[12] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 68-70
[13] ZHANG Zheng-Di, BI Qin-Sheng . Singular Wave Solutions of Two Integrable Generalized KdV Equations[J]. Chin. Phys. Lett., 2010, 27(10): 68-70
[14] LI Yan-Min. Lie Symmetries, Perturbation to Symmetries and Adiabatic Invariants of a Generalized Birkhoff System[J]. Chin. Phys. Lett., 2010, 27(1): 68-70
[15] ZHANG Ying. Z' Mixing Effect in Stueckelberg Extended Effective Theory[J]. Chin. Phys. Lett., 2009, 26(8): 68-70
Viewed
Full text


Abstract